Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Test of bacteria toxin delivery system designed by Hebrew University researchers could pave way for new antibiotic drugs

17.06.2008
Researchers at the Hebrew University of Jerusalem have achieved a breakthrough in monitoring the toxin-delivery system of highly pathogenic bacteria – an accomplishment that could help pave the way for new drugs that will be capable of neutralizing those germs.

Most bacteria are harmless and do not cause infections. Some, however, are pathogenic and are equipped with special accessories that are used to deliver toxins (also termed “effectors”) into the cells of the infected person.

Numerous bacteria that cause disease, ranging from food poisoning to life threatening infection, employ a syringe-like nano-organelle (a specialized part of a cell having a specific function) that is used to inject toxic effectors into attacked host cells. This process is termed a type III secretion system (TTSS). Among these pathogens are Salmonella; the cause of typhoid fever, Yersinia; and enteropathogenic (intestinal) E. coli, which is responsible for the death of up to one million infants per year, mostly in developing countries.

The bacterial syringe employed by these bacteria is an excellent potential target for drugs (not yet available) to combat these diseases. In order to develop such drugs, however, a better understanding of the syringe functions is needed, requiring development of better methods for measuring the syringe activity.

... more about:
»bacteria »syringe

The Hebrew University researchers – Ilan Rosenshine, the Etta Rosensohn Professor of Bacteriology at the Hebrew University Faculty of Medicine, and his associates -- Erez Mills, Kobi Baruch, Xavier Charpentier and Simi Kobi -- have designed a new, real-time test that allows monitoring the syringe activity. Using this test, they have discovered new properties of this system, which might be used to develop drugs that will inhibit the syringe activity and thereby prevent disease and infection by these dangerous pathogens

Their achievement was described in a recent article in the journal Cell Host & Microbe.

Jerry Barach | The Hebrew University of Jerusal
Further information:
http://www.huji.ac.il

Further reports about: bacteria syringe

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>