Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Synthetic cocoa chemical slows growth of tumors in human cell lines

A synthetic chemical based on a compound found in cocoa beans slowed growth and accelerated destruction of human tumors in laboratory studies, and should be tested further for cancer chemoprevention or even treatment, say researchers at Georgetown University Medical Center.

"We have all heard that eating chocolate is good for you; this study suggests one reason why that might be true," says the study's lead author Min Kim, Ph.D., a research scientist in the Department of Oncology at Lombardi Comprehensive Cancer Center.

Published online today in Cell Cycle, the researchers describe how four different human tumor cells lines out of 16 tested were sensitive to the chemical, known as GECGC. The strongest response was seen in two different colon cancers; growth was cut in half and most of the tumor cells were damaged.

Normal cells were not affected by GECGC, which makes the chemical a candidate for cancer chemoprevention, says Kim.

... more about:
»GECGC »cocoa »colon

"This chemical seems to be safe, which makes sense because it has a structure similar to a natural product in cocoa beans - the same beans that are used to make chocolate," he says.

The researchers have long studied the beneficial effects of flavanols, which are molecules in vegetables and fruits that exhibit potent anti-oxidant and, potentially, anti-tumor properties. As part of these studies, investigators have been testing a new synthetic version of natural procyanidins, a class of flavanols, created and patented by the confectionery company, Mars Incorporated. (The company provided GECGC as a gift, and this project was funded in part by Mars Incorporated.)

In these studies, the scientists tested the effects of three different doses of GECGC on the cancer cell lines - the first time that a synthetic cocoa derivative has been used to screen human cancer cell lines. None of the doses tested were extreme, Kim points out. "The effective concentrations were considered similar to what a person might eat or use," he says.

They found sensitivity to GECGC in both colon cancer cell lines they tested, in cervical cancer cells and in one line of leukemia, tumor cells. Other cell lines were resistant, including ovarian and prostate cancer cells.

Overall, GECGC showed the most effect in treating cancer cells that are normally fast growing, Kim says. And the fact that it demonstrated the most killing power in colon cancer suggests the chemical "could serve as a promising therapeutic for colon cancer," he says. "So far, these data are very convincing."

The researchers do not yet clearly understand the mechanism by which GECGC disrupts tumor growth, but they think it inhibits the physical connections between cancer cells and blocks internal cell signaling pathways.

Kim says that animal studies testing the anticancer power of GECGC are currently underway. "While this work is indeed promising, we have much more study to do before we can say with authority that GECGC has anticancer properties."

Karen Mallet | EurekAlert!
Further information:

Further reports about: GECGC cocoa colon

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>