Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Synthetic cocoa chemical slows growth of tumors in human cell lines

17.06.2008
A synthetic chemical based on a compound found in cocoa beans slowed growth and accelerated destruction of human tumors in laboratory studies, and should be tested further for cancer chemoprevention or even treatment, say researchers at Georgetown University Medical Center.

"We have all heard that eating chocolate is good for you; this study suggests one reason why that might be true," says the study's lead author Min Kim, Ph.D., a research scientist in the Department of Oncology at Lombardi Comprehensive Cancer Center.

Published online today in Cell Cycle, the researchers describe how four different human tumor cells lines out of 16 tested were sensitive to the chemical, known as GECGC. The strongest response was seen in two different colon cancers; growth was cut in half and most of the tumor cells were damaged.

Normal cells were not affected by GECGC, which makes the chemical a candidate for cancer chemoprevention, says Kim.

... more about:
»GECGC »cocoa »colon

"This chemical seems to be safe, which makes sense because it has a structure similar to a natural product in cocoa beans - the same beans that are used to make chocolate," he says.

The researchers have long studied the beneficial effects of flavanols, which are molecules in vegetables and fruits that exhibit potent anti-oxidant and, potentially, anti-tumor properties. As part of these studies, investigators have been testing a new synthetic version of natural procyanidins, a class of flavanols, created and patented by the confectionery company, Mars Incorporated. (The company provided GECGC as a gift, and this project was funded in part by Mars Incorporated.)

In these studies, the scientists tested the effects of three different doses of GECGC on the cancer cell lines - the first time that a synthetic cocoa derivative has been used to screen human cancer cell lines. None of the doses tested were extreme, Kim points out. "The effective concentrations were considered similar to what a person might eat or use," he says.

They found sensitivity to GECGC in both colon cancer cell lines they tested, in cervical cancer cells and in one line of leukemia, tumor cells. Other cell lines were resistant, including ovarian and prostate cancer cells.

Overall, GECGC showed the most effect in treating cancer cells that are normally fast growing, Kim says. And the fact that it demonstrated the most killing power in colon cancer suggests the chemical "could serve as a promising therapeutic for colon cancer," he says. "So far, these data are very convincing."

The researchers do not yet clearly understand the mechanism by which GECGC disrupts tumor growth, but they think it inhibits the physical connections between cancer cells and blocks internal cell signaling pathways.

Kim says that animal studies testing the anticancer power of GECGC are currently underway. "While this work is indeed promising, we have much more study to do before we can say with authority that GECGC has anticancer properties."

Karen Mallet | EurekAlert!
Further information:
http://www.georgetown.edu

Further reports about: GECGC cocoa colon

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>