Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCR chemists use 'green chemistry' to produce amines, chemical compounds used widely in industry

17.06.2008
Catalyst discovered in Guy Bertrand's lab helps produce amines at low cost and no waste products

Chemists at UC Riverside have discovered an inexpensive, clean and quick way to prepare amines – nitrogen-containing organic compounds derived from ammonia that have wide industrial applications such as solvents, additives, anti-foam agents, corrosion inhibitors, detergents, dyes and bactericides.

Currently, industries produce amines in a costly two-step process that results in massive amounts of byproducts as waste.

"Although there are several methods to prepare amines on laboratory scales, most of them are not suitable for commodity chemical production not only because of the formation of waste materials but also because the cost of the starting substances used to prepare amines is high," said Guy Bertrand, a distinguished professor of chemistry, whose lab made the discovery.

... more about:
»Organic »UCR »ammonia »catalyst »produce

Bertrand explained that, currently, companies use hydrochloric acid, a highly corrosive solution, to produce amines. To generate one ton of amines, manufacturers must discard three tons of byproducts, adding to the overall cost of production.

"Our 'green chemistry' method, however, produces no waste, which makes it inexpensive," Bertrand said. "Moreover, the reaction is a quick one-step reaction, and you need a tiny amount of a catalyst to do the trick." (A catalyst is a substance which increases the rate of a chemical reaction without itself being used up in the reaction.)

Study results appear online in Angewandte Chemie. A print version of the research paper will appear soon in the journal as well.

The catalyst in question – a gold atom linked to a cyclic alkyl amino carbene or CAAC – is a ligand (a special molecule that binds to metals) that Bertrand's lab discovered in 2005.

The gold compound readily catalyzes the addition of ammonia – a colorless, pungent gas composed of nitrogen and hydrogen – to a number of organic compounds. One such chemical reaction involves ammonia combining with acetylene to produce an amine derivative; a carbon-nitrogen bond is created in this reaction.

"One of the greatest challenges in chemistry is to develop atom-efficient processes for the combination of ammonia with single organic molecules to create carbon-nitrogen bonds," Bertrand said. In atom-efficient processes, the amount of starting materials equals the amount of all products generated, with no atoms wasted.

More than 100 million tons of ammonia are produced annually in the world, and the production of amines similarly is huge. Essential to life as constituents of amino acids, amines occur in drugs and vitamins, and are used also to manufacture cosmetics, cleaning and crop protection agents, plastics, and coating resins.

"Our study paves the way for finding catalysts that mediate the addition of ammonia to simple alkenes, which are organic compounds containing a carbon-carbon double bond," Bertrand said. "This process is widely considered to be one of the ten greatest challenges for catalytic chemistry."

Bertrand, an internationally renowned scientist and a member of the French Academy of Sciences, came to UCR in 2001 from France's national research agency, the Centre National de la Recherche Scientifique (CNRS). At UCR, he directs the UCR-CNRS Joint Research Chemistry Laboratory, the first permanent French science laboratory in the United States.

He was joined in the research by UCR's Vincent Lavallo (now a postdoctoral researcher at the California Institute of Technology, Pasadena), Guido D. Frey, Bruno Donnadieu and Michele Soleilhavoup.

UCR's Office of Technology Commercialization has filed a patent application on the new catalyst developed in Bertrand's lab, and is seeking commercial partners to develop it.

The National Institutes of Health and Rhodia, Inc., funded the study.

The University of California, Riverside is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment of about 17,000 is projected to grow to 21,000 students by 2010. The campus is planning a medical school and already has reached the heart of the Coachella Valley by way of the UCR Palm Desert Graduate Center. With an annual statewide economic impact of nearly $1 billion, UCR is actively shaping the region's future. To learn more, visit www.ucr.edu or call (951) UCR-NEWS.

Iqbal Pittalwala | EurekAlert!
Further information:
http://www.ucr.edu

Further reports about: Organic UCR ammonia catalyst produce

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>