Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCR chemists use 'green chemistry' to produce amines, chemical compounds used widely in industry

17.06.2008
Catalyst discovered in Guy Bertrand's lab helps produce amines at low cost and no waste products

Chemists at UC Riverside have discovered an inexpensive, clean and quick way to prepare amines – nitrogen-containing organic compounds derived from ammonia that have wide industrial applications such as solvents, additives, anti-foam agents, corrosion inhibitors, detergents, dyes and bactericides.

Currently, industries produce amines in a costly two-step process that results in massive amounts of byproducts as waste.

"Although there are several methods to prepare amines on laboratory scales, most of them are not suitable for commodity chemical production not only because of the formation of waste materials but also because the cost of the starting substances used to prepare amines is high," said Guy Bertrand, a distinguished professor of chemistry, whose lab made the discovery.

... more about:
»Organic »UCR »ammonia »catalyst »produce

Bertrand explained that, currently, companies use hydrochloric acid, a highly corrosive solution, to produce amines. To generate one ton of amines, manufacturers must discard three tons of byproducts, adding to the overall cost of production.

"Our 'green chemistry' method, however, produces no waste, which makes it inexpensive," Bertrand said. "Moreover, the reaction is a quick one-step reaction, and you need a tiny amount of a catalyst to do the trick." (A catalyst is a substance which increases the rate of a chemical reaction without itself being used up in the reaction.)

Study results appear online in Angewandte Chemie. A print version of the research paper will appear soon in the journal as well.

The catalyst in question – a gold atom linked to a cyclic alkyl amino carbene or CAAC – is a ligand (a special molecule that binds to metals) that Bertrand's lab discovered in 2005.

The gold compound readily catalyzes the addition of ammonia – a colorless, pungent gas composed of nitrogen and hydrogen – to a number of organic compounds. One such chemical reaction involves ammonia combining with acetylene to produce an amine derivative; a carbon-nitrogen bond is created in this reaction.

"One of the greatest challenges in chemistry is to develop atom-efficient processes for the combination of ammonia with single organic molecules to create carbon-nitrogen bonds," Bertrand said. In atom-efficient processes, the amount of starting materials equals the amount of all products generated, with no atoms wasted.

More than 100 million tons of ammonia are produced annually in the world, and the production of amines similarly is huge. Essential to life as constituents of amino acids, amines occur in drugs and vitamins, and are used also to manufacture cosmetics, cleaning and crop protection agents, plastics, and coating resins.

"Our study paves the way for finding catalysts that mediate the addition of ammonia to simple alkenes, which are organic compounds containing a carbon-carbon double bond," Bertrand said. "This process is widely considered to be one of the ten greatest challenges for catalytic chemistry."

Bertrand, an internationally renowned scientist and a member of the French Academy of Sciences, came to UCR in 2001 from France's national research agency, the Centre National de la Recherche Scientifique (CNRS). At UCR, he directs the UCR-CNRS Joint Research Chemistry Laboratory, the first permanent French science laboratory in the United States.

He was joined in the research by UCR's Vincent Lavallo (now a postdoctoral researcher at the California Institute of Technology, Pasadena), Guido D. Frey, Bruno Donnadieu and Michele Soleilhavoup.

UCR's Office of Technology Commercialization has filed a patent application on the new catalyst developed in Bertrand's lab, and is seeking commercial partners to develop it.

The National Institutes of Health and Rhodia, Inc., funded the study.

The University of California, Riverside is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment of about 17,000 is projected to grow to 21,000 students by 2010. The campus is planning a medical school and already has reached the heart of the Coachella Valley by way of the UCR Palm Desert Graduate Center. With an annual statewide economic impact of nearly $1 billion, UCR is actively shaping the region's future. To learn more, visit www.ucr.edu or call (951) UCR-NEWS.

Iqbal Pittalwala | EurekAlert!
Further information:
http://www.ucr.edu

Further reports about: Organic UCR ammonia catalyst produce

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>