Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Centromeres cross over, a lot

16.06.2008
Recombination at centromeres is higher than anywhere else on the chromosome, even though methyltransferases do their best to prevent it, say Jaco et al., as published in the June 16 issue of the Journal of Cell Biology.

Centromeric recombination has been hard to study because the DNA at centromeres is so repetitive—it's hard to see when a segment has switched chromatids. Jaco et al. have now addressed this challenge by using CO-FISH (chromosome orientation fluorescence in situ hybridization).

After replication, the two new strands are digested away, leaving the two old strands. Because the strands are complementary in sequence, they can be tagged with strand-specific fluorescent probes. Using just one probe, only one chromatid would show a signal if no recombination had occurred.

Instead, the authors found that both chromatids fluoresced. And not just at one point—on average, the authors counted, centromeres had undergone 15 recombination events. This is about six times the rate of recombination as that seen for an equal length of telomeric DNA, and 175 times the rate for genomic DNA as a whole.

... more about:
»DNA »centromere »chromatid »recombination

Telomeric recombination is inhibited by protein complexes called shelterins and by DNA methylation. The centromere has no shelterin, but it is methylated. Knockdown of DNA methyltransferases increased recombination at the centromere by about 50%, and decreased centromere length, possibly because of misalignment between repeated segments during recombination, a common problem with repetitive DNA. How methylation limits recombination, and why centromeres didn't lengthen as well as shorten, are unknown.

Their repetitive structure makes centromeres recombinogenic by nature, and the authors suggest that epigenetic regulation may ensure the continued stability of essential binding regions for proteins that link to the centromere.

Emma Hill | EurekAlert!
Further information:
http://www.rockefeller.edu

Further reports about: DNA centromere chromatid recombination

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>