Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Centromeres cross over, a lot

16.06.2008
Recombination at centromeres is higher than anywhere else on the chromosome, even though methyltransferases do their best to prevent it, say Jaco et al., as published in the June 16 issue of the Journal of Cell Biology.

Centromeric recombination has been hard to study because the DNA at centromeres is so repetitive—it's hard to see when a segment has switched chromatids. Jaco et al. have now addressed this challenge by using CO-FISH (chromosome orientation fluorescence in situ hybridization).

After replication, the two new strands are digested away, leaving the two old strands. Because the strands are complementary in sequence, they can be tagged with strand-specific fluorescent probes. Using just one probe, only one chromatid would show a signal if no recombination had occurred.

Instead, the authors found that both chromatids fluoresced. And not just at one point—on average, the authors counted, centromeres had undergone 15 recombination events. This is about six times the rate of recombination as that seen for an equal length of telomeric DNA, and 175 times the rate for genomic DNA as a whole.

... more about:
»DNA »centromere »chromatid »recombination

Telomeric recombination is inhibited by protein complexes called shelterins and by DNA methylation. The centromere has no shelterin, but it is methylated. Knockdown of DNA methyltransferases increased recombination at the centromere by about 50%, and decreased centromere length, possibly because of misalignment between repeated segments during recombination, a common problem with repetitive DNA. How methylation limits recombination, and why centromeres didn't lengthen as well as shorten, are unknown.

Their repetitive structure makes centromeres recombinogenic by nature, and the authors suggest that epigenetic regulation may ensure the continued stability of essential binding regions for proteins that link to the centromere.

Emma Hill | EurekAlert!
Further information:
http://www.rockefeller.edu

Further reports about: DNA centromere chromatid recombination

More articles from Life Sciences:

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

Quantum optical sensor for the first time tested in space – with a laser system from Berlin

23.01.2017 | Physics and Astronomy

The interactome of infected neural cells reveals new therapeutic targets for Zika

23.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>