Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Integrated control of malaria and other vector diseases is crucial

Combating malaria and other so-called vector diseases with chemical controls is increasingly ineffective, besides being hazardous for humans and the environment. These chemical controls must therefore be eliminated.

In order to combat the diseases that insects and ticks transmit, all possible strategies must be united. Only then can we successfully combat these stubborn and escalating disease threats. Prof. Willem Takken made this proposal during his inaugural address as Professor of Medical and Veterinary Entomology at Wageningen University (the Netherlands).

Even now, says Prof. Takken, the many human and animal diseases transmitted by insects and ticks (the so-called vector diseases) claim countless lives in the world, not only in developing countries but also increasingly in the West. Government agencies and public bodies should make combating these diseases a top priority.

Due to the intensification of international commerce and tourism, more tropical and sub-tropical diseases find their way to Europe. In addition, changes in climate mean that these diseases can more often thrive in moderate climate zones. Examples include Bluetongue virus, which recently appeared in the Netherlands, and the increase in Lyme disease, but also West Nile virus, dengue and chikungunya.

... more about:
»DDT »Malaria »Takken »insects »vector

Every year, 4 billion people are exposed to malaria worldwide and 500 to 600 million of them become infected. Initially, in the 1940s and 1950s, the disease was combated very successfully with DDT. However, it gradually became apparent that the insects were becoming resistant to DDT and that this pesticide had very detrimental effects on human health and the environment. This led to DDT being banned in many countries, which in turn meant that the control of the disease virtually stopped between 1969 and 1999.

Prof. Takken is alarmed that some countries have again started using DDT. It has been shown that chemical control measures only work for a limited time and are not sustainable. Therefore an entirely different strategy must be developed which will provide a lasting solution to the malaria problem. He draws attention to the biological crop protection agents used for controlling pests and diseases in greenhouse horticulture. Currently, 95% of all vegetables from greenhouse horticulture in Western Europe are grown without insecticides. Prof. Takken wondered why this approach was not being used with vector diseases. Therefore he set the goal of controlling malaria without the use of chemical pesticides.

According to Prof. Takken, there must be more coherence in combating vector diseases. Important steps have been taken in recent decades towards a new approach for controlling malaria. The staff of Wageningen University have contributed to many of these steps, such as a cloth impregnated with a fungus that affects mosquitoes, or more recently, the development of scent traps to lure malaria mosquitoes away from houses and huts and then catch them.

But there are also other strategies, not only spectacular ones such as the biological control of larvae or the genetic modification of mosquitoes so that they can no longer transmit malaria, but also effective everyday methods, such as improving houses so that they keep mosquitoes outside, or better management of surface water where mosquitoes lay their eggs.

Takken argues for what he calls the integrated vector management concept, which takes account of all factors that play a role in the spread of malaria. The risks – which are already obvious – require immediate measures; there is no time to wait for new vaccines or new, acceptable chemical control measures.

Takken cites three scientific and technological developments which could be very important: the major developments in the area of molecular biology, the great progress that has been made with chemical ecology and the new developments in Geographic Information Systems and Remote Sensing. Takken proposes developing a strategy to deal specifically with the insects and ticks that are responsible for many diseases in humans and animals.

Jac Niessen | alfa
Further information:

Further reports about: DDT Malaria Takken insects vector

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

3-D-printed structures shrink when heated

26.10.2016 | Materials Sciences

Indian roadside refuse fires produce toxic rainbow

26.10.2016 | Health and Medicine

First results of NSTX-U research operations

26.10.2016 | Physics and Astronomy

More VideoLinks >>>