Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

EuroDYNA takes lid off the genome

13.06.2008
European researchers have made significant progress unravelling how genes are governed and why this sometimes goes wrong in disease. The key lies in the dynamic ever-changing structure of the chromatin, which is the underlying complex of protein and DNA making up the chromosomes in which almost all genes are housed within the genome.

The way this structure changes and responds to external signalling molecules within the cell determines how and when genes are expressed and also the mechanisms used to repair DNA damaged by a variety of internal and external insults, such as ultra violet radiation and free radical by-products of metabolism.

Understanding the structure of chromatin and its interactions with proteins and RNA within the cell was the goal of the European Science Foundation's (ESF) EuroDYNA programme, which held its last conference at the Wellcome Trust Conference Centre near Cambridge in May 2008. The study of genome structure involves interaction between various disciplines including cell biology, molecular physics, biomechanics and bioinformatics, as well as access to a wide range of expensive equipment such as electron microscopes, supercomputers, and scanners for simultaneous profiling of RNA expression across the whole genome. EuroDYNA helped broker these collaborations and enable projects to develop the critical mass needed to make real progress.

The expression of genes involves an apparatus comprised mostly of proteins for reading the DNA, leading to production of RNA. This RNA in turn is either transported within the cell to the protein factory called the ribosome, where the code is translated into proteins, or else it interacts with other genes to control their expression in turn. These processes are intimately related to the constantly changing physical and chemical structure of the chromatin. Furthermore the overall state of the genome evolves during the life cycle of the cell, leading to its duplication if and when the cell eventually divides. All these inter-related processes need to be understood in order to unravel the complex network of mechanisms controlling gene expression.

... more about:
»Chromatin »DNA »EuroDYNA »Genome »Interferon »PRR »Protein »RNA

One of the big fundamental questions tackled within EuroDYNA concerned the detailed structure of how the DNA double helix is folded in the nucleus of higher organisms. Although the double helix structure was discovered by Crick and Watson in 1953, the way it folds and stretches such that it fits in the cell nucleus is only now becoming clear, as is its relevance both for cell replication and gene expression. At the EuroDYNA conference, John van Noort from Leiden University in the Netherlands reported that the DNA molecule, which in humans and most mammals is about two metres in length but only 2 nanometres in diameter, is coiled up like a spring in a solenoid structure. In such a folded structure it behaves according to the well known Hooke's law, stating that up to a certain point the extension is proportional to the force applied. It turns out chromatin is a very elastic molecular complex, capable of stretching to three times its normal rest length without breaking, according to van Noort. Even more remarkably - and here it differs from a familiar metal spring - even if stretched beyond three times its rest length, the chromatin solenoid is capable of repairing itself and regaining its former shape and elasticity.

Indeed the ability of DNA to repair itself is essential for the long term survival of the cell and ultimately of the whole organism. DNA damage occurs not just from factors outside the cell nucleus, but also during the process of cell division (mitosis). The overall objective is to hand down the correct genetic code to the daughter cells during mitosis, a process so important that a number of surveillance and repair systems have been put in place to ensure its completion. One of those systems is called PRR (Post Replicative Repair) and it is highly conserved among all organisms, from bacteria to eukarya. PRR was discovered in the 1970s, but here again the detailed mechanisms are only now being elicited. At the EuroDYNA conference, Simone Sabbioneda from the University of Sussex presented new findings about one of the key PRR mechanisms called Translesion DNA Synthesis (TLS). This project, like some of the others, involved direct observation of processes as they take place in living cells, in this case using a technique called Fluorescence Recovery after Photobleaching. This comprises an optical microscope combined with a probe to observe the radiation emitted (the fluorescence) by molecules within a cell in response to a laser source. Such work is yielding important clues on how the PRR pathways work, hoping to help in the long term campaign to find novel, more specific, treatments for cancer, without the side effects of current therapies based on surgery, radiotherapy, or chemotherapy.

One EuroDYNA project however yielded a more immediate insight into a treatment already used to alleviate the symptoms of another important disease, MS (multiple sclerosis). Pavel Kovarik from the University of Vienna's Department of Microbiology and Immunology noted that the only compound capable of alleviating MS symptoms was the protein interferon beta. This resembles the interferon produced naturally by the body in response to infection, but until now it has not been known how it relieves symptoms for MS sufferers. However Kovarik and colleagues have shown that interferon works by upregulating (increasing production of) members of the protein family Tristetraprolin (TTP), which have an anti-inflammatory affect by in turn inhibiting production of pro-inflammatory agents. "We have demonstrated a novel function for interferon," said Kovarik. By understanding how it works, there is the potential for delivering interferon beta more effectively for treating MS.

There were other projects within EuroDYNA with great therapeutic potential, many of which will continue, but which would benefit greatly from an extension to this highly successful programme.

Thomas Lau | alfa
Further information:
http://www.esf.org/activities/eurocores/programmes/eurodyna.html

Further reports about: Chromatin DNA EuroDYNA Genome Interferon PRR Protein RNA

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>