Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Humour is shown to be fundamental to our success as a species

13.06.2008
First universal theory of humour answers how and why we find things funny

Published today The Pattern Recognition Theory of Humour by Alastair Clarke answers the centuries old question of what is humour. Clarke explains how and why we find things funny and identifies the reason humour is common to all human societies, its fundamental role in the evolution of homo sapiens and its continuing importance in the cognitive development of infants.

Clarke explains: “For some time now it’s been assumed that a global theory of humour is impossible. This theory changes thousands of years of incorrect analyses and mini-theories that have applied to only a small proportion of instances of humour. It offers a vital answer as to why humour exists in every human society”

Previous theories from philosophers, literary critics and psychologists have focused on what we laugh at, on ‘getting the joke’. “Humour cannot be explained in terms of content or subject matter. A group of individuals can respond completely differently to the same content, and so to understand humour we have to examine the structures underlying it and analyse the process by which each individual responds to them. Pattern Recognition Theory is an evolutionary and cognitive explanation of how and why an individual finds something funny. Effectively it explains that humour occurs when the brain recognizes a pattern that surprises it, and that this recognition is rewarded with the experience of the humorous response.” says Clarke.

Humour is not about comedy it is about a fundamental cognitive function. Clarke explains: “An ability to recognize patterns instantly and unconsciously has proved a fundamental weapon in the cognitive arsenal of human beings.” Recognising patterns enables us to quickly understand our environment and function effectively within it: language, which is unique to humans, is based on patterns.

Clarke’s theory has wider implications: “It sheds light on infantile cognitive development, will lead to a revision of tests on ‘humour’ to diagnose psychological or neurological conditions and will have implications regarding the development of language. It will lead to a clarification of whether other animals have a sense of humour, and has an important role to play in the production of artificial intelligence being that will feel a bit less robotic thanks to its sense of humour.”

Alastair Clarke explains: “The development of pattern recognition as displayed in humour could form the basis of humankind’s instinctive linguistic ability. Syntax and grammar function in fundamental patterns for which a child has an innate facility. All that differs from one individual to the next is the content of those patterns in terms of vocabulary.”

Pattern Recognition Theory identifies further correlation between the development of humour and the development of cognitive ability in infants. Previous research has shown that children respond to humour long before they can comprehend language or develop long-term memory. Humour is present as one of the early fundamental cognitive processes. Alastair Clarke explains: “Amusing childish games such as peek-a-boo and clap hands all exhibit the precise mechanism of humour as it appears in any adult form. Peek-a-boo can elicit a humorous response in infants as young as four months, and is, effectively, a simple process of surprise repetition, forming a clear, basic pattern. As the infant develops, the patterns in childish humour become more complex and compounded and attain spatial as well as temporal elements until, finally, the child begins to grapple with the patterns involved in linguistic humour.”

Alastair Clarke explains that the Pattern Recognition Theory “can not say categorically what is funny. The individual is of paramount importance in determining what they find amusing, bringing memories, associations, meta-meaning, disposition, their ability to recognize patterns and their comprehension of similarity to the equation. But the following two examples illustrate its basic structure. A common form of humour is the juxtaposition of two pictures, normally of people, in whom we recognize a similarity. What we are witnessing here is spatial repetition, a simple two-term pattern featuring the outline or the features of the first repeated in those of the second. If the pattern is sufficiently convincing (as in the degree to which we perceive repetition), and we are surprised by recognizing it, we will find the stimulus amusing.”

“As a second example, related to the first but in a different medium, stand-up comedy regularly features what we might call the It’s so true form of humour. As with the first example, the brain recognizes a two-term pattern of repetition between the comedian’s depiction and its retained mental image, and if the recognition is surprising, it will be found amusing. The individual may be surprised to hear such things being talked about in public, perhaps because they are taboo, or because the individual has never heard them being articulated before. The only difference between the two examples is that in the first the pattern is recognized between one photograph and the next, and in the second it occurs between the comedian’s words and the mental image retained by the individual of the matter being portrayed.”

“Both of these examples use simple patterns of exact repetition, even if the fidelity of that repetition is poor (for example if the photographs are only vaguely similar). But pattern types can be surprisingly varied, including reflection, reversal, minification and magnification and so on. Sarcasm, for example, functions around a basic pattern of reversal, otherwise known as repetition in opposites. Patterns can also contain many stages, whereas the ones depicted here feature only two terms.”

Nicola Hern | alfa
Further information:
http://www.pyrrhichouse.co.uk

Further reports about: Development Human Humour Theory fundamental infant repetition

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>