Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Humour is shown to be fundamental to our success as a species

13.06.2008
First universal theory of humour answers how and why we find things funny

Published today The Pattern Recognition Theory of Humour by Alastair Clarke answers the centuries old question of what is humour. Clarke explains how and why we find things funny and identifies the reason humour is common to all human societies, its fundamental role in the evolution of homo sapiens and its continuing importance in the cognitive development of infants.

Clarke explains: “For some time now it’s been assumed that a global theory of humour is impossible. This theory changes thousands of years of incorrect analyses and mini-theories that have applied to only a small proportion of instances of humour. It offers a vital answer as to why humour exists in every human society”

Previous theories from philosophers, literary critics and psychologists have focused on what we laugh at, on ‘getting the joke’. “Humour cannot be explained in terms of content or subject matter. A group of individuals can respond completely differently to the same content, and so to understand humour we have to examine the structures underlying it and analyse the process by which each individual responds to them. Pattern Recognition Theory is an evolutionary and cognitive explanation of how and why an individual finds something funny. Effectively it explains that humour occurs when the brain recognizes a pattern that surprises it, and that this recognition is rewarded with the experience of the humorous response.” says Clarke.

Humour is not about comedy it is about a fundamental cognitive function. Clarke explains: “An ability to recognize patterns instantly and unconsciously has proved a fundamental weapon in the cognitive arsenal of human beings.” Recognising patterns enables us to quickly understand our environment and function effectively within it: language, which is unique to humans, is based on patterns.

Clarke’s theory has wider implications: “It sheds light on infantile cognitive development, will lead to a revision of tests on ‘humour’ to diagnose psychological or neurological conditions and will have implications regarding the development of language. It will lead to a clarification of whether other animals have a sense of humour, and has an important role to play in the production of artificial intelligence being that will feel a bit less robotic thanks to its sense of humour.”

Alastair Clarke explains: “The development of pattern recognition as displayed in humour could form the basis of humankind’s instinctive linguistic ability. Syntax and grammar function in fundamental patterns for which a child has an innate facility. All that differs from one individual to the next is the content of those patterns in terms of vocabulary.”

Pattern Recognition Theory identifies further correlation between the development of humour and the development of cognitive ability in infants. Previous research has shown that children respond to humour long before they can comprehend language or develop long-term memory. Humour is present as one of the early fundamental cognitive processes. Alastair Clarke explains: “Amusing childish games such as peek-a-boo and clap hands all exhibit the precise mechanism of humour as it appears in any adult form. Peek-a-boo can elicit a humorous response in infants as young as four months, and is, effectively, a simple process of surprise repetition, forming a clear, basic pattern. As the infant develops, the patterns in childish humour become more complex and compounded and attain spatial as well as temporal elements until, finally, the child begins to grapple with the patterns involved in linguistic humour.”

Alastair Clarke explains that the Pattern Recognition Theory “can not say categorically what is funny. The individual is of paramount importance in determining what they find amusing, bringing memories, associations, meta-meaning, disposition, their ability to recognize patterns and their comprehension of similarity to the equation. But the following two examples illustrate its basic structure. A common form of humour is the juxtaposition of two pictures, normally of people, in whom we recognize a similarity. What we are witnessing here is spatial repetition, a simple two-term pattern featuring the outline or the features of the first repeated in those of the second. If the pattern is sufficiently convincing (as in the degree to which we perceive repetition), and we are surprised by recognizing it, we will find the stimulus amusing.”

“As a second example, related to the first but in a different medium, stand-up comedy regularly features what we might call the It’s so true form of humour. As with the first example, the brain recognizes a two-term pattern of repetition between the comedian’s depiction and its retained mental image, and if the recognition is surprising, it will be found amusing. The individual may be surprised to hear such things being talked about in public, perhaps because they are taboo, or because the individual has never heard them being articulated before. The only difference between the two examples is that in the first the pattern is recognized between one photograph and the next, and in the second it occurs between the comedian’s words and the mental image retained by the individual of the matter being portrayed.”

“Both of these examples use simple patterns of exact repetition, even if the fidelity of that repetition is poor (for example if the photographs are only vaguely similar). But pattern types can be surprisingly varied, including reflection, reversal, minification and magnification and so on. Sarcasm, for example, functions around a basic pattern of reversal, otherwise known as repetition in opposites. Patterns can also contain many stages, whereas the ones depicted here feature only two terms.”

Nicola Hern | alfa
Further information:
http://www.pyrrhichouse.co.uk

Further reports about: Development Human Humour Theory fundamental infant repetition

More articles from Life Sciences:

nachricht New application for acoustics helps estimate marine life populations
16.01.2018 | University of California - San Diego

nachricht Unexpected environmental source of methane discovered
16.01.2018 | University of Washington Health Sciences/UW Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

White graphene makes ceramics multifunctional

16.01.2018 | Materials Sciences

Breaking bad metals with neutrons

16.01.2018 | Materials Sciences

ISFH-CalTeC is “designated test centre” for the confirmation of solar cell world records

16.01.2018 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>