Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Humour is shown to be fundamental to our success as a species

13.06.2008
First universal theory of humour answers how and why we find things funny

Published today The Pattern Recognition Theory of Humour by Alastair Clarke answers the centuries old question of what is humour. Clarke explains how and why we find things funny and identifies the reason humour is common to all human societies, its fundamental role in the evolution of homo sapiens and its continuing importance in the cognitive development of infants.

Clarke explains: “For some time now it’s been assumed that a global theory of humour is impossible. This theory changes thousands of years of incorrect analyses and mini-theories that have applied to only a small proportion of instances of humour. It offers a vital answer as to why humour exists in every human society”

Previous theories from philosophers, literary critics and psychologists have focused on what we laugh at, on ‘getting the joke’. “Humour cannot be explained in terms of content or subject matter. A group of individuals can respond completely differently to the same content, and so to understand humour we have to examine the structures underlying it and analyse the process by which each individual responds to them. Pattern Recognition Theory is an evolutionary and cognitive explanation of how and why an individual finds something funny. Effectively it explains that humour occurs when the brain recognizes a pattern that surprises it, and that this recognition is rewarded with the experience of the humorous response.” says Clarke.

Humour is not about comedy it is about a fundamental cognitive function. Clarke explains: “An ability to recognize patterns instantly and unconsciously has proved a fundamental weapon in the cognitive arsenal of human beings.” Recognising patterns enables us to quickly understand our environment and function effectively within it: language, which is unique to humans, is based on patterns.

Clarke’s theory has wider implications: “It sheds light on infantile cognitive development, will lead to a revision of tests on ‘humour’ to diagnose psychological or neurological conditions and will have implications regarding the development of language. It will lead to a clarification of whether other animals have a sense of humour, and has an important role to play in the production of artificial intelligence being that will feel a bit less robotic thanks to its sense of humour.”

Alastair Clarke explains: “The development of pattern recognition as displayed in humour could form the basis of humankind’s instinctive linguistic ability. Syntax and grammar function in fundamental patterns for which a child has an innate facility. All that differs from one individual to the next is the content of those patterns in terms of vocabulary.”

Pattern Recognition Theory identifies further correlation between the development of humour and the development of cognitive ability in infants. Previous research has shown that children respond to humour long before they can comprehend language or develop long-term memory. Humour is present as one of the early fundamental cognitive processes. Alastair Clarke explains: “Amusing childish games such as peek-a-boo and clap hands all exhibit the precise mechanism of humour as it appears in any adult form. Peek-a-boo can elicit a humorous response in infants as young as four months, and is, effectively, a simple process of surprise repetition, forming a clear, basic pattern. As the infant develops, the patterns in childish humour become more complex and compounded and attain spatial as well as temporal elements until, finally, the child begins to grapple with the patterns involved in linguistic humour.”

Alastair Clarke explains that the Pattern Recognition Theory “can not say categorically what is funny. The individual is of paramount importance in determining what they find amusing, bringing memories, associations, meta-meaning, disposition, their ability to recognize patterns and their comprehension of similarity to the equation. But the following two examples illustrate its basic structure. A common form of humour is the juxtaposition of two pictures, normally of people, in whom we recognize a similarity. What we are witnessing here is spatial repetition, a simple two-term pattern featuring the outline or the features of the first repeated in those of the second. If the pattern is sufficiently convincing (as in the degree to which we perceive repetition), and we are surprised by recognizing it, we will find the stimulus amusing.”

“As a second example, related to the first but in a different medium, stand-up comedy regularly features what we might call the It’s so true form of humour. As with the first example, the brain recognizes a two-term pattern of repetition between the comedian’s depiction and its retained mental image, and if the recognition is surprising, it will be found amusing. The individual may be surprised to hear such things being talked about in public, perhaps because they are taboo, or because the individual has never heard them being articulated before. The only difference between the two examples is that in the first the pattern is recognized between one photograph and the next, and in the second it occurs between the comedian’s words and the mental image retained by the individual of the matter being portrayed.”

“Both of these examples use simple patterns of exact repetition, even if the fidelity of that repetition is poor (for example if the photographs are only vaguely similar). But pattern types can be surprisingly varied, including reflection, reversal, minification and magnification and so on. Sarcasm, for example, functions around a basic pattern of reversal, otherwise known as repetition in opposites. Patterns can also contain many stages, whereas the ones depicted here feature only two terms.”

Nicola Hern | alfa
Further information:
http://www.pyrrhichouse.co.uk

Further reports about: Development Human Humour Theory fundamental infant repetition

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Individualized fiber components for the world market

23.06.2017 | Physics and Astronomy

How brains surrender to sleep

23.06.2017 | Life Sciences

Can we see monkeys from space? Emerging technologies to map biodiversity

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>