Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Nanoglassblowing' Seen as Boon to Study of Individual Molecules

13.06.2008
Researchers from NIST and Cornell University have developed a new fabrication technique called 'nanoglassblowing' that creates nanoscale fluidic devices to isolate and study single molecules in solution, including individual DNA strands.

While the results may not rival the artistry of glassblowers in Europe and Latin America, researchers at the National Institute of Standards and Technology (NIST) and Cornell University have found beauty in a new fabrication technique called “nanoglassblowing” that creates nanoscale (billionth of a meter) fluidic devices used to isolate and study single molecules in solution—including individual DNA strands. The novel method is described in a paper posted online next week in the journal Nanotechnology.*

Traditionally, glass micro- and nanofluidic devices are fabricated by etching tiny channels into a glass wafer with the same lithographic procedures used to manufacture circuit patterns on semiconductor computer chips. The planar (flat-edged) rectangular canals are topped with a glass cover that is annealed (heated until it bonds permanently) into place. About a year ago, the authors of the Nanotechnology paper observed that in some cases, the heat of the annealing furnace caused air trapped in the channel to expand the glass cover into a curved shape, much like glassblowers use heated air to add roundness to their work. The researchers looked for ways to exploit this phenomenon and learned that they could easily control the amount of “blowing out” that occurred over several orders of magnitude.

As a result, the researchers were able to create devices with “funnels” many micrometers wide and about a micrometer deep that tapered down to nanochannels with depths as shallow as 7 nanometers—approximately 1,000 times smaller in diameter than a red blood cell. The nanoglassblown chambers soon showed distinct advantages over their planar predecessors.

... more about:
»DNA »glass »strands

“In the past, for example, it was difficult to get single strands of DNA into a nanofluidic device for study because DNA in solution balls up and tends to bounce off the sharp edges of planar channels with depths smaller than the ball,” says Cornell’s Elizabeth Strychalski. “The gradually dwindling size of the funnel-shaped entrance to our channel stretches the DNA out as it flows in with less resistance, making it easier to assess the properties of the DNA,” adds NIST’s Samuel Stavis.

Future nanoglassblown devices, the researchers say, could be fabricated to help sort DNA strands of different sizes or as part of a device to identify the base-pair components of single strands. Other potential applications of the technique include the manufacture of optofluidic elements—lenses or waveguides that could change how light is moved around a microchip—and rounded chambers in which single cells could be confined and held for culturing.

This work was supported in part by Cornell’s Nanobiotechnology Center, part of the National Science Foundation’s Science and Technology Center Program. It was performed while Samuel Stavis held a National Research Council Research Associateship Award at NIST.

* E.A. Strychalski, S.M. Stavis and H.G. Craighead. Non-planar nanofluidic devices for single molecule analysis fabricated using nanoglassblowing. Nanotechnology, Posted online the week of June 15, 2008.

Michael E. Newman | newswise
Further information:
http://www.nist.gov

Further reports about: DNA glass strands

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>