Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemists Get Scoop on Crude ‘Oil’ from Pig Manure

13.06.2008
Researchers have developed the first detailed chemical analysis revealing what processing is needed to transform pig manure derived 'crude oil' into fuel for vehicles or heating. Mass production of this type of biofuel could help consume a waste product overflowing at U.S. farms, but it will require a lot of refining.

After a close examination of crude oil made from pig manure, chemists at the National Institute of Standards and Technology (NIST) are certain about a number of things.

Most obviously, “This stuff smells worse than manure,” says NIST chemist Tom Bruno.

But a job’s a job, so the NIST team has developed the first detailed chemical analysis revealing what processing is needed to transform pig manure crude oil into fuel for vehicles or heating. Mass production of this type of biofuel could help consume a waste product overflowing at U.S. farms, and possibly enable cutbacks in the nation’s petroleum use and imports. But, according to a new NIST paper,* pig manure crude will require a lot of refining.

... more about:
»Fuel »Waste »distillation »manure

The ersatz oil used in the NIST analyses was provided by engineer Yuanhui Zhang of the University of Illinois Urbana-Champaign. Zhang developed a system using heat and pressure to transform organic compounds such as manure into oil.

As described in the new paper, Bruno and colleagues determined that the pig manure crude contains at least 83 major compounds, including many components that would need to be removed, such as about 15 percent water by volume, sulfur that otherwise could end up as pollution in vehicle exhaust, and lots of char waste containing heavy metals, including iron, zinc, silver, cobalt, chromium, lanthanum, scandium, tungsten and minute amounts of gold and hafnium. Whatever the pigs eat, from dirt to nutritional supplements, ends up in the oil.

While the thick black liquid may look like its petroleum-based counterparts, the NIST study shows that looks can be deceiving. “The fact that pig manure crude oil contains a lot of water is unfavorable. They would need to get the water out,” Bruno says.

The measurements were made with a new NIST test method and apparatus, the advanced distillation curve, which provides highly detailed and accurate data on the makeup and performance of complex fluids. A distillation curve charts the percentage of the total mixture that evaporates as a sample is slowly heated. Because the different components of a complex mixture typically have different boiling points, a distillation curve gives a good measure of the relative amount of each component in the mixture. NIST chemists enhanced the traditional technique by improving precision and control of temperature measurements and adding the capability to analyze the chemical composition of each boiling fraction using a variety of advanced methods.

NIST researchers analyzed the graphite-like char remaining after the distillation by bombarding it with neutrons, a non-destructive way of identifying the types and amounts of elements present. Two complementary neutron methods detected the heavy metals listed above.

Bruno and colleagues currently spend much of their time analyzing military jet fuels and are not planning a major foray into pig manure. But Bruno concedes that the effort may have a payoff. “Who knows, it might help decrease the nuisance of manure piles.”

For more on the process of making pig waste crude, see “Converting Manure to Oil: U of I Lays Groundwork for One-of-a-Kind Pilot Plant” (http://www.aces.uiuc.edu/news/stories/news3557.html)

* L.S. Ott, B.L. Smith and T.J. Bruno. Advanced distillation curve measurement: Application to a bio-derived crude oil prepared from swine manure. Fuel (2008), doi:10.1016/j.fuel.2008.04.038.

Laura Ost | newswise
Further information:
http://www.nist.gov

Further reports about: Fuel Waste distillation manure

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>