Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Taking the temperature of the no-fly zone

12.06.2008
Brandeis research has implications for understanding disease vectors, mechanisms of pain and inflammation

Flies, unlike humans, can't manipulate the temperature of their surroundings so they need to pick the best spot for flourishing. New Brandeis University research in this week's Nature reveals that they have internal thermosensors to help them.

Biologist Paul Garrity and his colleagues have discovered that the fruitfly Drosophila has four large heat-responsive neurons located in its brain. These are activated at temperatures just above the fly's preferred temperature by an ion channel in the cell membrane known as dTrpA1, which itself acts as a molecular sensor of warmth.

This internal warmth-sensing pathway helps the fly to avoid slightly raised temperatures and acts together with a cold-avoidance pathway in the antennae to set the fly's preferred temperature—enabling the fly to pick its optimal ambient temperature range for survival.

... more about:
»Animal »Sensor »internal

"We were very surprised to discover that flies used sensors in their brains to gauge environmental warmth. Large animals use peripheral neurons to monitor ambient temperature, and the prevailing view has been that the situation in small animals like fruit flies was similar," explained Garrity.

He and his colleagues Fumika Hamada, Mark Rosenzweig, Kyeongjin Kang, Stefan Pulver, Alfredo Ghezzi, and Tim Jegla pursued several avenues hoping to find the peripheral warmth sensors, but in the end the data indicated that the critical sensors weren't peripheral after all, but rather tucked away inside the fly's head.

"We don't know the details yet, but our data suggest dTRPA1 may function a bit like a fire alarm. When the temperature inside the fly's head gets too high, dTRPA1 activates these internal sensors that somehow help the fly move toward more hospitable climes," said Garrity.

Despite the ubiquitous influence of environmental temperature on animal and human behavior, little is known about the mechanisms of neural circuits that drive animals to select a preferred temperature. This research brings scientists an important step closer to understanding how neurons help flies seek just the right temperature to ensure their survival. In turn, these neural circuits are also potential targets for disrupting thermal preference and other thermosensory behaviors in agricultural pests and disease vectors such as malaria- and dengue-fever mosquitoes, who use heat-seeking to locate prey.

As global warming leads hundreds of species, including insects, fish, birds, and mammals to seek out different environments in which temperature is more optimal, understanding the molecules and the internal neural cues that drive these behaviors will shed light on the strategies animals use to cope with changes in their environments. Furthermore, the molecules that control these responses, like dTRPA1, are evolutionarily conserved proteins important for pain and inflammation in humans. A deeper understanding of how these proteins work will be important for devising new approaches and medicines for treating pain and inflammation.

Laura Gardner | EurekAlert!
Further information:
http://www.brandeis.edu

Further reports about: Animal Sensor internal

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>