Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Taking the temperature of the no-fly zone

12.06.2008
Brandeis research has implications for understanding disease vectors, mechanisms of pain and inflammation

Flies, unlike humans, can't manipulate the temperature of their surroundings so they need to pick the best spot for flourishing. New Brandeis University research in this week's Nature reveals that they have internal thermosensors to help them.

Biologist Paul Garrity and his colleagues have discovered that the fruitfly Drosophila has four large heat-responsive neurons located in its brain. These are activated at temperatures just above the fly's preferred temperature by an ion channel in the cell membrane known as dTrpA1, which itself acts as a molecular sensor of warmth.

This internal warmth-sensing pathway helps the fly to avoid slightly raised temperatures and acts together with a cold-avoidance pathway in the antennae to set the fly's preferred temperature—enabling the fly to pick its optimal ambient temperature range for survival.

... more about:
»Animal »Sensor »internal

"We were very surprised to discover that flies used sensors in their brains to gauge environmental warmth. Large animals use peripheral neurons to monitor ambient temperature, and the prevailing view has been that the situation in small animals like fruit flies was similar," explained Garrity.

He and his colleagues Fumika Hamada, Mark Rosenzweig, Kyeongjin Kang, Stefan Pulver, Alfredo Ghezzi, and Tim Jegla pursued several avenues hoping to find the peripheral warmth sensors, but in the end the data indicated that the critical sensors weren't peripheral after all, but rather tucked away inside the fly's head.

"We don't know the details yet, but our data suggest dTRPA1 may function a bit like a fire alarm. When the temperature inside the fly's head gets too high, dTRPA1 activates these internal sensors that somehow help the fly move toward more hospitable climes," said Garrity.

Despite the ubiquitous influence of environmental temperature on animal and human behavior, little is known about the mechanisms of neural circuits that drive animals to select a preferred temperature. This research brings scientists an important step closer to understanding how neurons help flies seek just the right temperature to ensure their survival. In turn, these neural circuits are also potential targets for disrupting thermal preference and other thermosensory behaviors in agricultural pests and disease vectors such as malaria- and dengue-fever mosquitoes, who use heat-seeking to locate prey.

As global warming leads hundreds of species, including insects, fish, birds, and mammals to seek out different environments in which temperature is more optimal, understanding the molecules and the internal neural cues that drive these behaviors will shed light on the strategies animals use to cope with changes in their environments. Furthermore, the molecules that control these responses, like dTRPA1, are evolutionarily conserved proteins important for pain and inflammation in humans. A deeper understanding of how these proteins work will be important for devising new approaches and medicines for treating pain and inflammation.

Laura Gardner | EurekAlert!
Further information:
http://www.brandeis.edu

Further reports about: Animal Sensor internal

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

Control of molecular motion by metal-plated 3-D printed plastic pieces

27.04.2017 | Materials Sciences

Move over, Superman! NIST method sees through concrete to detect early-stage corrosion

27.04.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>