Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Taking the temperature of the no-fly zone

12.06.2008
Brandeis research has implications for understanding disease vectors, mechanisms of pain and inflammation

Flies, unlike humans, can't manipulate the temperature of their surroundings so they need to pick the best spot for flourishing. New Brandeis University research in this week's Nature reveals that they have internal thermosensors to help them.

Biologist Paul Garrity and his colleagues have discovered that the fruitfly Drosophila has four large heat-responsive neurons located in its brain. These are activated at temperatures just above the fly's preferred temperature by an ion channel in the cell membrane known as dTrpA1, which itself acts as a molecular sensor of warmth.

This internal warmth-sensing pathway helps the fly to avoid slightly raised temperatures and acts together with a cold-avoidance pathway in the antennae to set the fly's preferred temperature—enabling the fly to pick its optimal ambient temperature range for survival.

... more about:
»Animal »Sensor »internal

"We were very surprised to discover that flies used sensors in their brains to gauge environmental warmth. Large animals use peripheral neurons to monitor ambient temperature, and the prevailing view has been that the situation in small animals like fruit flies was similar," explained Garrity.

He and his colleagues Fumika Hamada, Mark Rosenzweig, Kyeongjin Kang, Stefan Pulver, Alfredo Ghezzi, and Tim Jegla pursued several avenues hoping to find the peripheral warmth sensors, but in the end the data indicated that the critical sensors weren't peripheral after all, but rather tucked away inside the fly's head.

"We don't know the details yet, but our data suggest dTRPA1 may function a bit like a fire alarm. When the temperature inside the fly's head gets too high, dTRPA1 activates these internal sensors that somehow help the fly move toward more hospitable climes," said Garrity.

Despite the ubiquitous influence of environmental temperature on animal and human behavior, little is known about the mechanisms of neural circuits that drive animals to select a preferred temperature. This research brings scientists an important step closer to understanding how neurons help flies seek just the right temperature to ensure their survival. In turn, these neural circuits are also potential targets for disrupting thermal preference and other thermosensory behaviors in agricultural pests and disease vectors such as malaria- and dengue-fever mosquitoes, who use heat-seeking to locate prey.

As global warming leads hundreds of species, including insects, fish, birds, and mammals to seek out different environments in which temperature is more optimal, understanding the molecules and the internal neural cues that drive these behaviors will shed light on the strategies animals use to cope with changes in their environments. Furthermore, the molecules that control these responses, like dTRPA1, are evolutionarily conserved proteins important for pain and inflammation in humans. A deeper understanding of how these proteins work will be important for devising new approaches and medicines for treating pain and inflammation.

Laura Gardner | EurekAlert!
Further information:
http://www.brandeis.edu

Further reports about: Animal Sensor internal

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>