Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Phantom parent molecule of important class of chemical compounds isolated for first time

12.06.2008
A team of scientists from the University of Georgia and two European universities has, for the first time, synthesized and characterized the elusive parent molecule of an important class of chemical compounds.

The discovery, reported today in the journal Nature, involves trapping the carbene hydroxymethylene (HCOH) in a matrix of argon at 11 degrees Kelvin—just above absolute zero (¬?.67 degrees F)—where it was observed to decay, over a period of a few hours, to formaldehyde in a process that bears resemblance to the radioactive decay of nuclei.

While chemists had theorized for some years that HCOH should be isolable, this is the first time it has been achieved, and the accomplishment provides a greater understanding of the behavior of a class of compounds extremely important to organic and organometallic chemistry.

"It took a perfect match between experimental observations and theoretical predictions for us to say we have this molecule for the first time," said UGA chemist Wesley Allen, "but it worked beautifully, and this method can work for other elusive molecules as well."

... more about:
»HCOH »Quantum »UGA »compounds »decay »tunneling

Co-authors with Allen on the paper were Peter Schreiner and Hans Peter Reisenauer of Liebig University in Germany; Edit Mátyus and Attila Császár of Eötvös University in Hungary; and Frank Pickard and Andrew Simmonett, who along with Allen are with the department of chemistry at UGA. Schreiner received his doctoral degree from UGA and was on the faculty for several years before returning to Germany.

While the capture of HCOH is important, just as interesting is the team's unexpected discovery that the molecule decays to formaldehyde near absolute zero through "quantum tunneling," one of the more mystifying aspects of quantum theory. In quantum tunneling, a particle passes through a barrier that is impenetrable by normal standards.

"This kind of tunneling happens all the time with electrons, because they are so light," said Allen, "but for it to happen for heavier particles such as hydrogen atoms, the barriers must be more modest. In this case, the HCOH molecule tunnels under an enormous barrier, perhaps the most spectacular example of this process known in chemistry."

The reason why the group was studying HCOH at all began with a NASA project, since scientists at the space agency wanted to see if the elusive molecule existed in space but first needed to know what it would look like. Unfortunately, no one had been able to isolate and characterize it until the current research.

Allen and his UGA colleagues, who are theoretical chemists—studying chemistry by large-scale computations based on the laws of physics—say that it's now highly unlikely that free HCOH will be found in space.

"One of the most gratifying parts of this work is that we made the predictions of the tell-tale signatures of the molecule prior to the actual laboratory studies, which were done in Europe," said Allen, "so to us it helps prove the value of quantum chemistry in finding solutions in the lab."

While the signatures of HCOH were predicted, the quantum tunneling aspect came completely out of left field, Allen said, surprising everyone involved.

"Peter [Schreiner] called me up and said the decay mechanism was tunneling, because the molecule was perfectly stable when a heavy hydrogen isotope was inserted," said Allen. "I initially laughed at this idea. But I did the theory to see if it could be quantum tunneling, and sure enough we found out that it is what was happening in all likelihood. It was amazing."

Kim Osborne | EurekAlert!
Further information:
http://www.uga.edu

Further reports about: HCOH Quantum UGA compounds decay tunneling

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>