Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Phantom parent molecule of important class of chemical compounds isolated for first time

12.06.2008
A team of scientists from the University of Georgia and two European universities has, for the first time, synthesized and characterized the elusive parent molecule of an important class of chemical compounds.

The discovery, reported today in the journal Nature, involves trapping the carbene hydroxymethylene (HCOH) in a matrix of argon at 11 degrees Kelvin—just above absolute zero (¬?.67 degrees F)—where it was observed to decay, over a period of a few hours, to formaldehyde in a process that bears resemblance to the radioactive decay of nuclei.

While chemists had theorized for some years that HCOH should be isolable, this is the first time it has been achieved, and the accomplishment provides a greater understanding of the behavior of a class of compounds extremely important to organic and organometallic chemistry.

"It took a perfect match between experimental observations and theoretical predictions for us to say we have this molecule for the first time," said UGA chemist Wesley Allen, "but it worked beautifully, and this method can work for other elusive molecules as well."

... more about:
»HCOH »Quantum »UGA »compounds »decay »tunneling

Co-authors with Allen on the paper were Peter Schreiner and Hans Peter Reisenauer of Liebig University in Germany; Edit Mátyus and Attila Császár of Eötvös University in Hungary; and Frank Pickard and Andrew Simmonett, who along with Allen are with the department of chemistry at UGA. Schreiner received his doctoral degree from UGA and was on the faculty for several years before returning to Germany.

While the capture of HCOH is important, just as interesting is the team's unexpected discovery that the molecule decays to formaldehyde near absolute zero through "quantum tunneling," one of the more mystifying aspects of quantum theory. In quantum tunneling, a particle passes through a barrier that is impenetrable by normal standards.

"This kind of tunneling happens all the time with electrons, because they are so light," said Allen, "but for it to happen for heavier particles such as hydrogen atoms, the barriers must be more modest. In this case, the HCOH molecule tunnels under an enormous barrier, perhaps the most spectacular example of this process known in chemistry."

The reason why the group was studying HCOH at all began with a NASA project, since scientists at the space agency wanted to see if the elusive molecule existed in space but first needed to know what it would look like. Unfortunately, no one had been able to isolate and characterize it until the current research.

Allen and his UGA colleagues, who are theoretical chemists—studying chemistry by large-scale computations based on the laws of physics—say that it's now highly unlikely that free HCOH will be found in space.

"One of the most gratifying parts of this work is that we made the predictions of the tell-tale signatures of the molecule prior to the actual laboratory studies, which were done in Europe," said Allen, "so to us it helps prove the value of quantum chemistry in finding solutions in the lab."

While the signatures of HCOH were predicted, the quantum tunneling aspect came completely out of left field, Allen said, surprising everyone involved.

"Peter [Schreiner] called me up and said the decay mechanism was tunneling, because the molecule was perfectly stable when a heavy hydrogen isotope was inserted," said Allen. "I initially laughed at this idea. But I did the theory to see if it could be quantum tunneling, and sure enough we found out that it is what was happening in all likelihood. It was amazing."

Kim Osborne | EurekAlert!
Further information:
http://www.uga.edu

Further reports about: HCOH Quantum UGA compounds decay tunneling

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>