Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Northwestern Chemist Investigates Lost Reds In Homer Painting

More than 30 years ago, when Northwestern University chemist Richard Van Duyne developed a powerful new sensing technique, he never thought he would be using it to learn more about treasures in the Art Institute of Chicago’s collection -- including a watercolor recently featured in the museum’s exhibition “Watercolors by Winslow Homer: The Color of Light.”

In Homer’s watercolor “For to be a Farmer’s Boy,” painted in 1887, some of the red and yellow pigments have faded in the sky, leaving that area virtually without color. Van Duyne, Charles E. and Emma H. Morrison Professor of Chemistry in the Weinberg College of Arts and Sciences, is working with Francesca Casadio, a conservation scientist at the Art Institute, to determine what the original colors were.

To solve this mystery, they are using surface enhanced Raman spectroscopy (SERS), the analytical technique pioneered by Van Duyne in 1977. SERS uses laser light and nanoparticles of precious metals to interact with molecules to show the chemical make-up of a particular dye.

SERS is a variation of Raman spectroscopy, a widely used technique first developed in the 1920s. What sets SERS apart is its ability to analyze extremely minute samples of organic dyes; some samples are so small they cannot be seen by the naked eye.

... more about:
»Duyne »Raman »SERS »dye »textile

Organic dyes are natural substances that were used to color artworks created before the introduction of synthetic dyes in the late 1800s and 1900s. That’s a lot of art -- from Egyptian textiles to Renaissance tapestries to Impressionist paintings and beyond.

Because red dyes are easily damaged by light and fluoresce when probed with conventional Raman spectroscopy but not by SERS, Van Duyne and Casadio have been focusing on organic red dyes in particular, working to identify those used in Homer’s painting as well as in a variety of textiles, such as a 16th century carpet from Istanbul and a rare textile fragment from Peru, dated from 800 to 1350 A.D.

“Our research provides an entirely new window onto the analysis of artworks,” said Van Duyne. “There’s a broad range of physical science methods used in the conservation business. The trick is you can’t harm the work -- the method has to be non-destructive or minimally destructive. Conservators do a lot of work with X-ray photography and infrared photography, but those techniques don’t tell you what elements are present. The Raman technique tells you about what molecules are there.”

In preparing for the Art Institute’s major Homer exhibition, conservators discovered, using X-ray fluorescence spectrometry and visual examination through a microscope, that the painting’s white skies were originally painted in unstable red and orange dyes that have almost completely faded.

In discerning the painting’s original colors, Van Duyne’s team must figure out a reliable way of preparing microscopic watercolor samples for SERS analysis. In the end, Art Institute conservators won’t repaint the original skies but, in conjunction with the Homer exhibition, they created a digital image that offers viewers an idea of the artist’s intentions. (View the digital simulation of “For to be a Farmer’s Boy” at

Van Duyne says that conservation scientists are unlocking the secrets of dye and pigment analysis, and that in the future such analysis will help conservators determine forgery, authenticity, exact provenance and best restoration methods. “If we have a better idea about which materials are used in paintings, for instance, we’ll have a better idea of how to restore them. Just identifying what’s involved is a very important step.”

The work, which also has involved a number of Northwestern students, is part of a long-term collaboration between Northwestern and the Art Institute that focuses on scientific research in the field of art conservation.

Megan Fellman | EurekAlert!
Further information:

Further reports about: Duyne Raman SERS dye textile

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>