Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A protein sequence associated with Huntington's disease may become life-saving vaccine component

On June 10, 2008 the scientific journal "Vaccine" published a paper by the Massachusetts based biotech company Cure Lab, Inc., demonstrating that a protein sequence important in neurodegenerative Huntington's disease can be safely used as a new generation of vaccine adjuvants.

The major component of every vaccine is an antigen that elicits specific immunity to a particular virus, bacteria or even cancer cells. Search for better antigens is one of the most pressing medical and public health necessities, and the biotech industry invests heavily in this research.

However, antigens are able to generate a limited immune response if administered alone. In order to be protective or therapeutic, vaccine compositions have to be supplemented with adjuvants, strong facilitators of the immune response. In the search for efficient adjuvants that are also non-toxic, scientists at Cure Lab, Inc. discovered a novel paradigm that capitalizes on insights from recent breakthroughs in understanding the fatal neurodegenerative disorder, Huntington's.

Huntington's disease results from mutations in the protein huntingtin, which contains a sequence of polyglutamine residues (polyQ). In healthy individuals, huntingtin contains less than 35 glutamines in the polyQ segment. However, in neurons of Huntington's patients, the number of glutamine residues in the sequence expands to more than 36. This induces protein self-aggregation, or formation of big protein "chunks", and eventually causes neuronal dysfunction. Recent research findings indicate that attachment of a prolonged polyQ segment to almost any protein promotes its aggregation.

... more about:
»Adjuvant »Antigen »ERA »Huntington' »Protein »Vaccine »polyQ »sequence

"There were two ideas - said Alex Shneider, Cure Lab's founder and CEO- which stimulated us to test if attachment of a long polyQ "tail" to an antigen can enhance immune response to vaccination". First, he noticed that small aggregates formed by an antigen fused to a polyQ tail resembled the droplets that conventional adjuvants formed with antigenic peptides exposed on their surface. Dr. Shneider hypothesized that these polyQ containing aggregates were easily taken up by antigen-presenting cells, as is the case with adjuvant droplets, triggering the immune response.

Another hypothesis was proposed by Michael Sherman, professor at Boston University Medical School and scientific consultant at Cure Lab. "We knew- said Michael Sherman- that polyQ aggregates are destroyed in cells by a special degradation system, called autophagy. Interestingly, autophagy plays a key role in the processing of certain antigens, which is critical for the immune response. So, attachment of a polyQ tail should specifically target the antigen to autophagy, which in turn should facilitate the response. Thus, polyQ would serve as a molecular adjuvant".

There are two branches to the immune system. One is responsible for developing antibodies against bacteria, viruses and toxins freely circulating in the organism. Another is aimed at eliminating virus-infected or cancer cells. Cure Lab's paper demonstrates that the new polyQ-based adjuvant efficiently enhances both branches of the immune response to a poor model antigen. Importantly, the adjuvant caused no apparent toxicity in mice.

Many questions remain to be answered. The adjuvant properties of the polyQ tail will have to be tested for each individual antigen of medical and veterinary importance. However, this work may launch a new era in vaccine development, the era of molecular adjuvants.

Alex Shneider | EurekAlert!
Further information:

Further reports about: Adjuvant Antigen ERA Huntington' Protein Vaccine polyQ sequence

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>