Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A protein sequence associated with Huntington's disease may become life-saving vaccine component

On June 10, 2008 the scientific journal "Vaccine" published a paper by the Massachusetts based biotech company Cure Lab, Inc., demonstrating that a protein sequence important in neurodegenerative Huntington's disease can be safely used as a new generation of vaccine adjuvants.

The major component of every vaccine is an antigen that elicits specific immunity to a particular virus, bacteria or even cancer cells. Search for better antigens is one of the most pressing medical and public health necessities, and the biotech industry invests heavily in this research.

However, antigens are able to generate a limited immune response if administered alone. In order to be protective or therapeutic, vaccine compositions have to be supplemented with adjuvants, strong facilitators of the immune response. In the search for efficient adjuvants that are also non-toxic, scientists at Cure Lab, Inc. discovered a novel paradigm that capitalizes on insights from recent breakthroughs in understanding the fatal neurodegenerative disorder, Huntington's.

Huntington's disease results from mutations in the protein huntingtin, which contains a sequence of polyglutamine residues (polyQ). In healthy individuals, huntingtin contains less than 35 glutamines in the polyQ segment. However, in neurons of Huntington's patients, the number of glutamine residues in the sequence expands to more than 36. This induces protein self-aggregation, or formation of big protein "chunks", and eventually causes neuronal dysfunction. Recent research findings indicate that attachment of a prolonged polyQ segment to almost any protein promotes its aggregation.

... more about:
»Adjuvant »Antigen »ERA »Huntington' »Protein »Vaccine »polyQ »sequence

"There were two ideas - said Alex Shneider, Cure Lab's founder and CEO- which stimulated us to test if attachment of a long polyQ "tail" to an antigen can enhance immune response to vaccination". First, he noticed that small aggregates formed by an antigen fused to a polyQ tail resembled the droplets that conventional adjuvants formed with antigenic peptides exposed on their surface. Dr. Shneider hypothesized that these polyQ containing aggregates were easily taken up by antigen-presenting cells, as is the case with adjuvant droplets, triggering the immune response.

Another hypothesis was proposed by Michael Sherman, professor at Boston University Medical School and scientific consultant at Cure Lab. "We knew- said Michael Sherman- that polyQ aggregates are destroyed in cells by a special degradation system, called autophagy. Interestingly, autophagy plays a key role in the processing of certain antigens, which is critical for the immune response. So, attachment of a polyQ tail should specifically target the antigen to autophagy, which in turn should facilitate the response. Thus, polyQ would serve as a molecular adjuvant".

There are two branches to the immune system. One is responsible for developing antibodies against bacteria, viruses and toxins freely circulating in the organism. Another is aimed at eliminating virus-infected or cancer cells. Cure Lab's paper demonstrates that the new polyQ-based adjuvant efficiently enhances both branches of the immune response to a poor model antigen. Importantly, the adjuvant caused no apparent toxicity in mice.

Many questions remain to be answered. The adjuvant properties of the polyQ tail will have to be tested for each individual antigen of medical and veterinary importance. However, this work may launch a new era in vaccine development, the era of molecular adjuvants.

Alex Shneider | EurekAlert!
Further information:

Further reports about: Adjuvant Antigen ERA Huntington' Protein Vaccine polyQ sequence

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>