Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Keio University scientists prove pigeons have self-cognitive abilities higher than 3-year-old humans

12.06.2008
In a press release issued yesterday, Keio University scientists have shown that pigeons are able to discriminate video images of themselves, paintings of certain painters (Van Gogh vs Chagall) and more. The video image discrimination ability is higher than 3-year-old children.

Prof. Shigeru Watanabe of the Graduate School of Human Relations of Keio University and Tsukuba University graduate student Kohji Toda trained pigeons to discriminate real-time self-image using mirrors as well as videotaped self-image, and proved that pigeons can recognize video images that reflect their movements as self-image.

Self-recognition is found in large primates such as chimpanzees, and recent findings show that dolphins and elephants also have such intelligence. Proving that pigeons also have this ability show that such high intelligence as self-recognition can be seen in various animals, and are not limited to primates and dolphins that have large brains.

1. EXPERIMENT METHOD AND RESULTS

(1) Method of experiment
The pigeon was trained to discriminate two types of video images in the following method. First, live video images of the present self (A) and recorded video images of the pigeon that moves differently from the present self (B) are shown. When the pigeon learns to discriminate these two images, the video image of (A) is shown with a temporal delay, so that the monitor shows the image of the pigeon a few seconds before. If the pigeon remembers its own movements, it can recognize it as self-image even with the delay.
(2) Experiment results
The pigeon could discriminate (A) with a few seconds delay as something different from (B). This proves that the pigeon can differentiate the present self-image and the recorded self-image of the past, which means that the pigeon has self-cognitive abilities. Video image (A) matches with the movement of itself, whereas (B) does not. Being able to discriminate the two means that the pigeon understands the difference between movements of itself and movements of the taped image. In this experiment, movements of the pigeon itself are in question instead of the mark of Gallup’s mark test (see 2-(1)). When there is a temporal delay in the image of the present self, the longer the delay, the more pigeon’s discrimination was disrupted, and this also shows that the pigeon discriminates the video images using its own movements. The important thing is whether it understands the difference between movements in the video image that match with itself and movements in the video image that don’t.

(These findings will be introduced in “Animal Cognition”, a journal for comparative cognitive science. The electronic version of “Animal Cognition” has been released.)

2. METHOD OF TESTING SELF RECOGNITION ON ANIMALS

(1) Gallup’s mirror test (self-recognition test)
The self-recognition test on animals using mirrors was developed by psychology Prof. Gordon Gallup Jr. at the State University of New York, Albany. His papers released in 1970 in the “Science” magazine explaining that chimpanzees have abilities for self-recognition attracted attention. This test is known as the first to test self-recognition on animals. He anesthetized chimpanzees and then marked their faces. When the chimpanzees were awakened, they were confronted with a mirror and they touched the corresponding marked region of their own faces. Most tests of self-recognition are a variation of the Gallup test, and are used to assess self-recognition in a wide variety of species. It is also called the mark test, or the rouge test.
(2) Assessment of self-recognition on pigeons
Self-recognition can be assessed with cross-modality matching. A typical example of cross-modality matching is waving your hand when you see yourself in a video image. With a mirror image or video image of oneself, when information of the propriocepter (how the arms and legs of oneself are moving) and visual information of oneself correlate, this can be considered self-recognition. The Gallup’s mark test is based on the precondition that the subject can touch itself. Unless the subject touches itself, it cannot be proved that it has abilities for self-recognition. However, the test conducted on pigeons is more advanced, as it is based on how the pigeons move, and by memorizing the shown images, pigeons proved that they have self-cognitive abilities.

3. SELF-COGNITIVE ABILITIES OF PIGEONS ARE HIGHER THAN THAT OF 3-YEAR OLDS

Through various experiments, it is known that pigeons have great visual cognitive abilities. For example, a research at Harvard University proved that pigeons could discriminate people photographs from others. At Prof. Shigeru Watanabe’s laboratory, pigeons could discriminate paintings of a certain painter (such as Van Gogh) from another painter (such as Chagall).

Furthermore, pigeons could discriminate other pigeons individually, and also discriminate stimulated pigeons that were given stimulant drugs from none. In this experiment, pigeons could discriminate video images that reflect their movements even with a 5-7 second delay from video images that don’t reflect their movements. This ability is higher than an average 3-year-olds of humans. According to a research by Prof. Hiraki of the University of Tokyo, 3-year-olds have difficulty recognizing their self-image with only a 2 second delay.

(*1) Global COE Program
This on-going research is part of the 2007 Global COE Program (*1) and conducted by the "Center of Advanced Research on Logic and Sensibility". The Global COE Program is designed to succeed and advance achievements of the "21st Century COE Program" inaugurated by Japan's Ministry of Education, Culture, Sports, Science and Technology in 2002. Its aim is to support establishment of world-class education and research centers within Japanese universities with an eye to raising their competitiveness to the highest world level. In 2007, Keio University was selected in three fields.
(*2) Center of Advanced Research on Logic and Sensibility
This program is intended to acquire an integrated understanding of logic and conclusion in decision making from the fundamental biological level to the civilized level. It aims at nurturing researchers with knowledge of both experimental science and humanities so they can lead the future world as world-class researchers with leading-edge technologies. The program also enhances partnership with international universities, and conducts joint research with institutions such as the University of Cambridge, University of Vienna and Universität Bielefeld.
Inquiries: Ms. Moriguchi or Ms. Mizuno,
Office of Communications and Public Relations,
Keio University
TEL: +81-3-5427-1541
FAX: +81-3-5441-7640
E-mail: m-koho@adst.keio.ac.jp

Center for Research Promotion | ResearchSEA
Further information:
http://www.keio.ac.jp/
http://www.keio.ac.jp/english/press_release/080611e.pdf
http://www.researchsea.com

Further reports about: COE chimpanzees delay mirror pigeon self-cognitive self-recognition

More articles from Life Sciences:

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA eyes Pineapple Express soaking California

24.02.2017 | Earth Sciences

New gene for atrazine resistance identified in waterhemp

24.02.2017 | Agricultural and Forestry Science

New Mechanisms of Gene Inactivation may prevent Aging and Cancer

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>