Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Keio University scientists prove pigeons have self-cognitive abilities higher than 3-year-old humans

12.06.2008
In a press release issued yesterday, Keio University scientists have shown that pigeons are able to discriminate video images of themselves, paintings of certain painters (Van Gogh vs Chagall) and more. The video image discrimination ability is higher than 3-year-old children.

Prof. Shigeru Watanabe of the Graduate School of Human Relations of Keio University and Tsukuba University graduate student Kohji Toda trained pigeons to discriminate real-time self-image using mirrors as well as videotaped self-image, and proved that pigeons can recognize video images that reflect their movements as self-image.

Self-recognition is found in large primates such as chimpanzees, and recent findings show that dolphins and elephants also have such intelligence. Proving that pigeons also have this ability show that such high intelligence as self-recognition can be seen in various animals, and are not limited to primates and dolphins that have large brains.

1. EXPERIMENT METHOD AND RESULTS

(1) Method of experiment
The pigeon was trained to discriminate two types of video images in the following method. First, live video images of the present self (A) and recorded video images of the pigeon that moves differently from the present self (B) are shown. When the pigeon learns to discriminate these two images, the video image of (A) is shown with a temporal delay, so that the monitor shows the image of the pigeon a few seconds before. If the pigeon remembers its own movements, it can recognize it as self-image even with the delay.
(2) Experiment results
The pigeon could discriminate (A) with a few seconds delay as something different from (B). This proves that the pigeon can differentiate the present self-image and the recorded self-image of the past, which means that the pigeon has self-cognitive abilities. Video image (A) matches with the movement of itself, whereas (B) does not. Being able to discriminate the two means that the pigeon understands the difference between movements of itself and movements of the taped image. In this experiment, movements of the pigeon itself are in question instead of the mark of Gallup’s mark test (see 2-(1)). When there is a temporal delay in the image of the present self, the longer the delay, the more pigeon’s discrimination was disrupted, and this also shows that the pigeon discriminates the video images using its own movements. The important thing is whether it understands the difference between movements in the video image that match with itself and movements in the video image that don’t.

(These findings will be introduced in “Animal Cognition”, a journal for comparative cognitive science. The electronic version of “Animal Cognition” has been released.)

2. METHOD OF TESTING SELF RECOGNITION ON ANIMALS

(1) Gallup’s mirror test (self-recognition test)
The self-recognition test on animals using mirrors was developed by psychology Prof. Gordon Gallup Jr. at the State University of New York, Albany. His papers released in 1970 in the “Science” magazine explaining that chimpanzees have abilities for self-recognition attracted attention. This test is known as the first to test self-recognition on animals. He anesthetized chimpanzees and then marked their faces. When the chimpanzees were awakened, they were confronted with a mirror and they touched the corresponding marked region of their own faces. Most tests of self-recognition are a variation of the Gallup test, and are used to assess self-recognition in a wide variety of species. It is also called the mark test, or the rouge test.
(2) Assessment of self-recognition on pigeons
Self-recognition can be assessed with cross-modality matching. A typical example of cross-modality matching is waving your hand when you see yourself in a video image. With a mirror image or video image of oneself, when information of the propriocepter (how the arms and legs of oneself are moving) and visual information of oneself correlate, this can be considered self-recognition. The Gallup’s mark test is based on the precondition that the subject can touch itself. Unless the subject touches itself, it cannot be proved that it has abilities for self-recognition. However, the test conducted on pigeons is more advanced, as it is based on how the pigeons move, and by memorizing the shown images, pigeons proved that they have self-cognitive abilities.

3. SELF-COGNITIVE ABILITIES OF PIGEONS ARE HIGHER THAN THAT OF 3-YEAR OLDS

Through various experiments, it is known that pigeons have great visual cognitive abilities. For example, a research at Harvard University proved that pigeons could discriminate people photographs from others. At Prof. Shigeru Watanabe’s laboratory, pigeons could discriminate paintings of a certain painter (such as Van Gogh) from another painter (such as Chagall).

Furthermore, pigeons could discriminate other pigeons individually, and also discriminate stimulated pigeons that were given stimulant drugs from none. In this experiment, pigeons could discriminate video images that reflect their movements even with a 5-7 second delay from video images that don’t reflect their movements. This ability is higher than an average 3-year-olds of humans. According to a research by Prof. Hiraki of the University of Tokyo, 3-year-olds have difficulty recognizing their self-image with only a 2 second delay.

(*1) Global COE Program
This on-going research is part of the 2007 Global COE Program (*1) and conducted by the "Center of Advanced Research on Logic and Sensibility". The Global COE Program is designed to succeed and advance achievements of the "21st Century COE Program" inaugurated by Japan's Ministry of Education, Culture, Sports, Science and Technology in 2002. Its aim is to support establishment of world-class education and research centers within Japanese universities with an eye to raising their competitiveness to the highest world level. In 2007, Keio University was selected in three fields.
(*2) Center of Advanced Research on Logic and Sensibility
This program is intended to acquire an integrated understanding of logic and conclusion in decision making from the fundamental biological level to the civilized level. It aims at nurturing researchers with knowledge of both experimental science and humanities so they can lead the future world as world-class researchers with leading-edge technologies. The program also enhances partnership with international universities, and conducts joint research with institutions such as the University of Cambridge, University of Vienna and Universität Bielefeld.
Inquiries: Ms. Moriguchi or Ms. Mizuno,
Office of Communications and Public Relations,
Keio University
TEL: +81-3-5427-1541
FAX: +81-3-5441-7640
E-mail: m-koho@adst.keio.ac.jp

Center for Research Promotion | ResearchSEA
Further information:
http://www.keio.ac.jp/
http://www.keio.ac.jp/english/press_release/080611e.pdf
http://www.researchsea.com

Further reports about: COE chimpanzees delay mirror pigeon self-cognitive self-recognition

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

The TU Ilmenau develops tomorrow’s chip technology today

27.04.2017 | Information Technology

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

VideoLinks
B2B-VideoLinks
More VideoLinks >>>