Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Perfect Vision but Blind to Light

12.06.2008
Mammals have two types of light-sensitive detectors in the retina. Known as rod and cone cells, they are both necessary to picture their environment.

However, researchers at the Salk Institute for Biological Studies have found that eliminating a third sensor — cells expressing a photopigment called melanopsin that measures the intensity of incoming light —makes the circadian clock blind to light, yet leaves normal vision intact.

“It is entirely possible that in many older people a loss of this light sensor is not associated with a loss of vision, but instead may lead to difficulty falling asleep at the right time,” says Satchidananda Panda, Ph.D., an assistant professor in the Regulatory Biology Laboratory, who led the study.

Understanding how melanopsin does its job may one day allow scientists to reset the body’s biological clock with a pill to alleviate symptoms associated with jet lag, shifts in work schedules, seasonal changes in day lengths and disorders such as insomnia and depression, the researchers say. Their findings are published in the June 11, 2008 issue of the PLoS ONE.

Visual processing begins when photons entering the eye strike one or more of the 125 million light-sensitive nerve cells in the retina at the back of each eye. Rod cells use rhodopsin to pick up dim light, while cone cells rely on related photopigments to discriminate color. This first and outermost layer of cells converts the information into electrical signals and sends them to an intermediate layer, which in turn relays signals to the optic nerve. Melanopsin is different from the classical rod and cone opsins, which help us see.

“It functions like a light meter in a camera, but does more than set our biological clock,” explains Panda. “The incoming information about light intensity is also used to adjust the aperture or pupil size, regulate melatonin synthesis and physical activity.”

Unlike the millions of rod and cone cells imparting vision, melanopsin is only present in roughly 2,000 cells, which are known as melanopsin-expressing retinal ganglion cells or mRGCs. Embedded in the inner retina, these spidery cells signal directly to the human circadian clock, a cluster of cells less than half the size of a pencil eraser, which sits just above the point where the optic nerves cross.

Through these signals, the clock synchronizes the body’s daily rhythms with the rising and setting of the sun. It tells the body when it’s time to go to sleep, when to be hungry, when to wake up and makes us feel completely out of sync when we cross several time zones.

While it had been known that blind mice without functional rods and cones can still use mRGCs to adjust their biological clock, the aperture of their pupils and light-dependent activity ¬— collectively known as non-image forming visual responses — mice without melanopsin were not completely blind to light.

Since mice developing without melanopsin might compensate during their development for the lack of incoming information about light intensity, resulting in muddled results, postdoctoral researcher and first author Megumi Hatori, Ph.D., developed a system that allowed her to specifically and efficiently shut down all melanopsin-expressing cells while leaving the retina intact.

She genetically engineered mice to render their mRGCs susceptible to diptheria toxin, which she exploited to kill melanopsin-expressing cells at eight weeks of age. “We found that killing the melanopsin-expressing cells makes the mouse circadian clock completely blind to light,” says Hatori, “but these mice can still perform normal image-forming visual tasks perfectly fine.”

The mammalian time keeping system relies on information from melanopsin -- and to a lesser extent from rods and cones -- to collect information about light intensity. The Salk researchers experiments pinpointed mRGCs as the location where all the incoming information about the brightness of ambient light is integrated and forwarded to the circadian clock.

“Since all the information passes through mRGCs, these cells have emerged as a unique cellular target for therapeutic intervention in circadian clock related disorders,” says Panda, who has started screening small molecules for their ability to tweak melanopsin’s light sensing properties and thereby slowing down or enhancing the resetting of our biological clock.

Researchers who also contributed to this work include researchers Hiep Le, Christopher Vollmers, Sheena Racheal Keding and Nobushige Tanaka, Ph.D., in the Panda laboratory, Christian Schmedt, Ph.D., Associate Director of Genetics at the Genomics Institute of the Novartis Research Foundation, San Diego, and assistant professor Timothy Jegla, Ph.D., at The Scripps Research Institute, La Jolla.

The Salk Institute for Biological Studies in La Jolla, California, is an independent nonprofit organization dedicated to fundamental discoveries in the life sciences, the improvement of human health and the training of future generations of researchers. Jonas Salk, M.D., whose polio vaccine all but eradicated the crippling disease poliomyelitis in 1955, opened the Institute in 1965 with a gift of land from the City of San Diego and the financial support of the March of Dimes.

Gina Kirchweger | newswise
Further information:
http://www.salk.edu

Further reports about: Melanopsin PANDA Retina circadian mRGCs melanopsin-expressing

More articles from Life Sciences:

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>