Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Perfect Vision but Blind to Light

12.06.2008
Mammals have two types of light-sensitive detectors in the retina. Known as rod and cone cells, they are both necessary to picture their environment.

However, researchers at the Salk Institute for Biological Studies have found that eliminating a third sensor — cells expressing a photopigment called melanopsin that measures the intensity of incoming light —makes the circadian clock blind to light, yet leaves normal vision intact.

“It is entirely possible that in many older people a loss of this light sensor is not associated with a loss of vision, but instead may lead to difficulty falling asleep at the right time,” says Satchidananda Panda, Ph.D., an assistant professor in the Regulatory Biology Laboratory, who led the study.

Understanding how melanopsin does its job may one day allow scientists to reset the body’s biological clock with a pill to alleviate symptoms associated with jet lag, shifts in work schedules, seasonal changes in day lengths and disorders such as insomnia and depression, the researchers say. Their findings are published in the June 11, 2008 issue of the PLoS ONE.

Visual processing begins when photons entering the eye strike one or more of the 125 million light-sensitive nerve cells in the retina at the back of each eye. Rod cells use rhodopsin to pick up dim light, while cone cells rely on related photopigments to discriminate color. This first and outermost layer of cells converts the information into electrical signals and sends them to an intermediate layer, which in turn relays signals to the optic nerve. Melanopsin is different from the classical rod and cone opsins, which help us see.

“It functions like a light meter in a camera, but does more than set our biological clock,” explains Panda. “The incoming information about light intensity is also used to adjust the aperture or pupil size, regulate melatonin synthesis and physical activity.”

Unlike the millions of rod and cone cells imparting vision, melanopsin is only present in roughly 2,000 cells, which are known as melanopsin-expressing retinal ganglion cells or mRGCs. Embedded in the inner retina, these spidery cells signal directly to the human circadian clock, a cluster of cells less than half the size of a pencil eraser, which sits just above the point where the optic nerves cross.

Through these signals, the clock synchronizes the body’s daily rhythms with the rising and setting of the sun. It tells the body when it’s time to go to sleep, when to be hungry, when to wake up and makes us feel completely out of sync when we cross several time zones.

While it had been known that blind mice without functional rods and cones can still use mRGCs to adjust their biological clock, the aperture of their pupils and light-dependent activity ¬— collectively known as non-image forming visual responses — mice without melanopsin were not completely blind to light.

Since mice developing without melanopsin might compensate during their development for the lack of incoming information about light intensity, resulting in muddled results, postdoctoral researcher and first author Megumi Hatori, Ph.D., developed a system that allowed her to specifically and efficiently shut down all melanopsin-expressing cells while leaving the retina intact.

She genetically engineered mice to render their mRGCs susceptible to diptheria toxin, which she exploited to kill melanopsin-expressing cells at eight weeks of age. “We found that killing the melanopsin-expressing cells makes the mouse circadian clock completely blind to light,” says Hatori, “but these mice can still perform normal image-forming visual tasks perfectly fine.”

The mammalian time keeping system relies on information from melanopsin -- and to a lesser extent from rods and cones -- to collect information about light intensity. The Salk researchers experiments pinpointed mRGCs as the location where all the incoming information about the brightness of ambient light is integrated and forwarded to the circadian clock.

“Since all the information passes through mRGCs, these cells have emerged as a unique cellular target for therapeutic intervention in circadian clock related disorders,” says Panda, who has started screening small molecules for their ability to tweak melanopsin’s light sensing properties and thereby slowing down or enhancing the resetting of our biological clock.

Researchers who also contributed to this work include researchers Hiep Le, Christopher Vollmers, Sheena Racheal Keding and Nobushige Tanaka, Ph.D., in the Panda laboratory, Christian Schmedt, Ph.D., Associate Director of Genetics at the Genomics Institute of the Novartis Research Foundation, San Diego, and assistant professor Timothy Jegla, Ph.D., at The Scripps Research Institute, La Jolla.

The Salk Institute for Biological Studies in La Jolla, California, is an independent nonprofit organization dedicated to fundamental discoveries in the life sciences, the improvement of human health and the training of future generations of researchers. Jonas Salk, M.D., whose polio vaccine all but eradicated the crippling disease poliomyelitis in 1955, opened the Institute in 1965 with a gift of land from the City of San Diego and the financial support of the March of Dimes.

Gina Kirchweger | newswise
Further information:
http://www.salk.edu

Further reports about: Melanopsin PANDA Retina circadian mRGCs melanopsin-expressing

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>