Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene variation linked to earlier onset of Alzheimer's symptoms

10.06.2008
Investigators at Washington University School of Medicine in St. Louis have identified a genetic variation associated with an earlier age of onset in Alzheimer's disease.

Unlike genetic mutations previously linked to rare, inherited forms of early-onset Alzheimer's disease — which can strike people as young as their 30s or 40s — these variants influence an earlier presentation of symptoms in people affected by the more common, late-onset form of the disease.

Two principal features characterize Alzheimer's disease in the brain: amyloid plaques and neurofibrillary tangles. The plaques contain a protein called amyloid-beta. The tangles are made of a protein called tau.

The research team analyzed DNA from 313 subjects from Washington University's Alzheimer's Disease Research Center (ADRC), focusing on locations in the tau gene that previously have been found to vary between people.

"We focused on this gene for two reasons: First, it codes for the tau protein that we find in neurofibrillary tangles, and secondly, some studies in the scientific literature show an association between the gene and Alzheimer's disease, while others do not," says principal investigator Alison M. Goate, D. Phil., the Samuel and Mae S. Ludwig Professor of Genetics in Psychiatry and professor of neurology. "Even a study from our own group had found no association between tau gene variants and Alzheimer's disease."

But this study, reported in the June 10 issue of the Proceedings of the National Academy of Sciences, changes that. One reason past studies may have produced conflicting results is that most, if not all, people have amyloid plaques in the brain years before they develop clinical symptoms of Alzheimer's.

"It's not uncommon for us to determine that an older person is fully intact mentally only to find the presence of substantial Alzheimer's pathology on examining that person's brain after death," says John C. Morris, M.D., the Harvey A. and Dorismae Friedman Distinguished Professor of Neurology and director of the ADRC and of the Harvey A. Friedman Center for Aging. "We suspect that Alzheimer lesions may be present in the brain long before we can detect any clinical symptoms."

Previous research from Goate's colleagues David M. Holtzman, M.D., the Andrew B. and Gretchen P. Jones Professor and head of the Department of Neurology, and Anne M. Fagan, Ph.D., associate professor of neurology, measured soluble forms of amyloid-beta and tau proteins in the cerebrospinal fluid. They determined that amyloid-beta levels indicate whether or not amyloid plaques are present in the brain.

"A particular form of amyloid-beta called amyloid-beta 42, tends to be higher in the cerebrospinal fluid of normal individuals and lower in patients with Alzheimer's disease and in cognitively normal people who have amyloid plaques in the brain," says Holtzman. "Tau protein levels in the cerebrospinal fluid increase when a person starts developing dementia."

Finding those amyloid deposits once required examination of the brain after a person's death, but researchers now can detect their presence by assessing them with positron emission tomography (PET) imaging as well as measuring amyloid beta 42. When PET imaging detects amyloid in the brain, patients have lower levels of amyloid-beta 42 in their cerebrospinal fluid.

Goate's team found that four DNA sequence variants in the tau gene were associated with higher levels of tau protein in the cerebrospinal fluid. Then they divided patients into two groups. One group had evidence of plaques in the brain, while the other did not. The investigators found that the variations in the gene are only associated with an increase in tau protein levels in the cerebrospinal fluid when there is evidence of amyloid plaques in the brain.

Armed with those findings, Goate's team predicted that the variants in the tau gene that contributed to higher levels of tau protein in the cerebrospinal fluid would be associated with a younger age at the onset of Alzheimer's disease symptoms.

"So we went back to the ADRC's clinical samples, and that's exactly what we found," she says. "Individuals who carry these genetic variations that lead to higher levels of tau in cerebrospinal fluid actually have an earlier age of onset than those who carry variants that are associated with lower levels of tau."

Goate says these sequence variants in the tau gene are not linked to risk of Alzheimer's disease but rather to earlier cognitive problems once plaques have started to form in the brain. She says people who possess those genetic variants, if they are fated to develop Alzheimer's disease, will experience symptoms sooner.

"Advanced techniques in identifying markers for amyloid and tau deposition in the brains of people with Alzheimer's disease, in combination with genetic analysis, are giving us new clues about how the disease begins," says Marcelle Morrison-Bogorad, Ph.D., director of the Division of Neuroscience at the National Institute on Aging. "This study offers important information about the levels of expression of particular forms of the tau gene in the presence of brain amyloid and therefore may help us understand why the disease begins earlier in some persons than in others."

Goate says these findings lend further support to the hypothesis that amyloid-beta plaques form earlier in the cascade of Alzheimer's pathology, and that the tau protein is involved in how the disease progresses. She says more work is needed at the cellular level to figure out how the proteins interact to cause Alzheimer's symptoms, but in the meantime, she says identifying these variants in the tau gene may provide clinicians with a new target for potential therapies.

"Even when there already is evidence of amyloid deposition in the brain, if we could find a way to lower tau levels, we would predict that the onset of symptoms may be delayed," she says. "But we need to do a lot more cell biology and research in animal models before we can hope to do that."

Jim Dryden | EurekAlert!
Further information:
http://www.wustl.edu
http://www.pnas.org/cgi/doi/10/1073/pnas.0801227105

Further reports about: Alzheimer' Amyloid Amyloid-beta Genetic Plaques Tau cerebrospinal onset symptoms

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>