Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Missing protein in Fragile X Syndrome is key to transporting signals within neurons

10.06.2008
Fragile X syndrome (FXS) robs the brain of a protein that plays a major role in the way neurons communicate and that is essential for brain development, learning and memory.

A team of scientists has discovered new information about how FXS interferes with signaling between the nucleus of neurons and the synapse, the outer reaches of the neuron where two neurons communicate via chemical and electrical signals. The discovery should help lead the way to the development of new treatments for FXS, the most common form of inherited mental retardation and also a genetic contributor to some types of autism and epilepsy.

The research will be published in the June 10 issue of Developmental Cell. The team was led by Gary J. Bassell, professor of cell biology and neurology at Emory University School of Medicine and Robert H. Singer, PhD, professor of anatomy & structural biology at the Albert Einstein College of Medicine. First author was Jason B. Dictenberg of Hunter College, City University of New York and Albert Einstein College of Medicine.

Translation of an organism's genetic information begins in the nucleus of a cell, where the DNA sequence (gene) is copied into an mRNA molecule, then exported into the cell's cytoplasm and translated into protein molecules.

... more about:
»FMRP »FXS »Neuron »Nucleus »Protein »RNA »Synapse »dendrites »mRNA

FXS is caused by the silencing of a single gene, which normally would encode for the expression of the fragile x mental retardation protein (FMRP)--an mRNA (messenger RNA) binding protein. mRNA binding proteins are known to be key regulators of gene expression because they act as master regulators of other mRNAs and broadly influence how proteins are synthesized from mRNAs.

The precise functions for FMRP have been unclear, but scientists recently have learned that FMRP is able to bind and regulate several mRNAs that are present at synapses in the brain. Each mRNA molecule can be translated many times at the synapse, producing many copies of the encoded protein and providing an efficient way for a neuron to supply its synapse with essential proteins needed for communication. Since mRNAs can be turned on or off, each synapse can decide for itself whether or not new proteins are needed to promote signaling. Proper signaling at synapses is essential for the complex wiring of connections that must occur during brain development and during learning and memory. In FXS, there are defects in both the structure and signaling at synapses, due to the lack of FMRP regulation of mRNAs at synapses. Until now, a major unanswered question has been how FMRP and its bound mRNAs are delivered to axons and dendrites Ð the tentacle-like projections of neurons-- and to the synapses at their outer extremities.

"A major challenge for the field of neuroscience has been to understand how a selective group of mRNAs can be transported long distances from the nucleus, where the RNA is made, to reach the synapses, where this select group of mRNAs can be translated into the protein molecules that are needed to enable signaling," says Bassell. "This mechanism of mRNA transport into axons and dendrites and its translation at synapses is critical for synapse signaling during learning, memory and cognition."

Bassell and his Emory colleagues have developed high resolution microscopic imaging tools to visualize FMRP in live neurons, allowing them to track the movements of FMRP and associated mRNA molecules along dendrites, using cultured neurons isolated from the hippocampus of mouse embryos.

The researchers discovered that FMRP binds to a molecular motor, which allows it to carry its bound mRNAs in the form of particles out into the dendrites.

"FMRP seems to be quite a clever protein that acts like a postal carrier to deliver messages to the synapse, enabling and sustaining their continued signaling," says Bassell.

In a mouse model of FXS, the investigators discovered that mRNAs are not motored into dendrites in response to synaptic signaling and thus cannot allow for local protein synthesis at synapses needed to sustain the synaptic signaling between nerve cells. In essence, the ability of the nerve cell to communicate from the nucleus to the synapse is lost in fragile X.

The researchers also were able to identify the select group of mRNAs that the neuron ships into dendrites via FMRP. Knowing which molecules within the FMRP pathway function at synapses should facilitate the development of new treatment strategies and drug interventions for FXS.

Holly Korschun | EurekAlert!
Further information:
http://www.emory.edu

Further reports about: FMRP FXS Neuron Nucleus Protein RNA Synapse dendrites mRNA

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>