Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mixing and matching genes to keep nerve cells straight

10.06.2008
With fewer than 30,000 human genes with which to work, Nature has to mix and match to generate the myriad types of neurons or nerve cells needed to assemble the brain and nervous system.

Keeping this involved process on the straight and narrow requires a clever balance of promotion and inhibition, said researchers from Baylor College of Medicine in Houston in a report that appears in the current edition of the journal Developmental Cell.

"Our finding should have implications for the entire stem cell field," said Dr. Soo-Kyung Lee, assistant professor of molecular and cellular biology at BCM. "Scientists are seeking to make particular cell types using combinations of embryonic genes. They need to keeping mind that you do not just push them forward down one pathway. You must also suppress related pathways."

"During embryonic development, one needs to generate a lot of different types of neurons," said Lee, also a faculty member in the BCM Graduate School of Biomedical Sciences. "How are they being generated at the right time and place? To assemble the brain, you need all these different types of neurons. With a limited number of genes, how do you generate such a complex system?"

... more about:
»Embryonic »Lhx3 »Nerve »Neuron »V2-interneuron

"We want to understand the molecular mechanisms that allow one gene to influence the formation of many neurons," she said.

They found that both promotion of one pathway and inhibition of another are required to keep the cells on the right road to cell fate determination.

"One factor does not determine cell fate," she said. It's a combination of factors or genes that together affect neuron formation.

She and her colleagues concentrated their work on the development of motor neurons in mice. Two types of nerve cells – spinal motor neurons and V2-interneurons – are required for motor coordination. As they become those cells, they share important regulatory factors, said Lee.

"They share a cell lineage pathway," she said. "We asked how do we generate two different lineages from one pathway?"

A cocktail of the transcription factors Isl1 and Lhx3 can cause embryonic cells to become motor neurons, she said.

"If we put only Lhx3 into the embryonic neural stem cells, they become V2-interneurons," she said. However, deleting the genes can cause the pathways to converge, resulting in hybrid cells that result in the death of the embryos.

This does not happen in Nature, she said, and they found that a gene called Hb9, expressed only in motor neurons, blocks the ability of Lhx3 to cause embryonic neural stem cells to become the V2-interneurons.

"Once you turn on the complex of Isl1 and Lhx3, then you also turn on a repressor that blocks the cells from going down the alternative pathway to becoming V2-interneurons," she said. The motor neuron fate of those cells is sealed. They found a similar repressor function in the V2-interneuron pathway.

"We think this is a delicately developed system," said Lee. "We don't think this mechanism is restricted to motor neurons."

Graciela Gutierrez | EurekAlert!
Further information:
http://www.bcm.edu
http://www.developmentalcell.com/

Further reports about: Embryonic Lhx3 Nerve Neuron V2-interneuron

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>