Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Serotonin may affect our sense of fairness

10.06.2008
The neurotransmitter serotonin, which acts as a chemical messenger between nerve cells, plays a critical role in regulating emotions such as aggression during social decision-making, new research by scientists at England's University of Cambridge and UCLA suggests. Their findings appear June 6 in the peer-reviewed journal Science.

Serotonin has long been associated with social behavior, and low levels of serotonin are associated with depression and anxiety, but its precise involvement in impulsive aggression has been controversial. Though many scientists have hypothesized a link between serotonin and impulsivity, this is one of the first studies to show a causal link between the two.

The findings highlight why some of us may become combative or aggressive when we have not eaten. The essential amino acid necessary for the body to create serotonin can only be obtained through diet; our serotonin levels naturally decline when we don't eat.

The research also provides insight into clinical disorders characterized by low serotonin levels, such as depression and obsessive-compulsive disorder, and may help explain some of the social difficulties associated with these disorders.

... more about:
»Health »Serotonin »disorder

UCLA scientists reported in April that the human brain responds to being treated fairly the same way it responds to winning money and eating chocolate; being treated fairly turns on the brain's reward circuitry. In the new Science study, they and their Cambridge colleagues report that people with low serotonin levels were found to be more sensitive to being treated unfairly.

The Science study involved 20 subjects, 14 of them female, with an average age of 25. As in the April study, published in the journal Psychological Science, participants were presented with fair and insulting offers for dividing sums of money. If they declined, neither they nor the person making the offer would receive anything. Some of the offers were fair, such as receiving 5 Brisith pounds out of 10 or out of 12, while others were unfair, such as receiving 5 pounds out of 23.

In this study, however, after initially responding to the offers, participants were given a drink that significantly reduced their serotonin levels. They were then presented with the offers again.

When their serotonin levels were reduced, they rejected 82 percent of the unfair offers; when their serotonin levels were normal, they rejected only 67 percent of the unfair offers. Thus, people with low serotonin levels were more likely to reject unfair offers.

"The same person may experience the same thing as fair and unfair on different days based on how the neurochemistry of the brain is functioning," said study co-author Matthew D. Lieberman, UCLA associate professor of psychology and a founder of social cognitive neuroscience. "When we feel something is unfair, that may have to do with how our brain causes us to experience the world. Our subjects are not aware their serotonin levels are affecting the way they experience the world. This suggests we should be more forgiving of other people's perspectives."

"A sense of fair play is not a purely rational process," he added. "It seems not to be the case that, like a math formula, if something is fair, it's fair for all time, in all situations."

Stuart Wolpert | EurekAlert!
Further information:
http://www.ucla.edu

Further reports about: Health Serotonin disorder

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>