Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers block the transmission of malaria in animal tests

10.06.2008
By disrupting the potassium channel of the malaria parasite, a team of researchers has been able to prevent the malaria parasites from forming in mosquitoes and has thereby broken the cycle of infection during recent animal tests.

By genetically altering the malaria parasite through gene knock-out technology, a research team consisting of scientists at the University of Copenhagen and John Hopkins University, Baltimore, has prevented the parasite from going through the normal stages of its life cycle and developing a cyst (egg-like structure or occyst), which spawns new infectious parasites."

As it is exclusively the parasites from these oocysts that can infect new individuals, we were able to prevent the disease from being transmitted to the animals in our tests", explains Assistant Professor, Peter Ellekvist from the University of Copenhagen.

The findings have been published in the scientific journal Proceedings of the National Academy of Sciences, USA, (2008 105: 6398-6402).

... more about:
»Animal »Ion »Malaria »parasite »potassium

The intervention "disrupts" the parasites complex life cycle

The malaria parasite has an extremely complicated lifecycle, which starts with the fertilisation of the parasites male and female gametes and the formation of an oocyst, in the mosquito's stomach wall. The oocyst further develops into sporozoittes, which travel up the mosquito's salivary gland and from there are transmitted to people, when the mosquito secures its next blood meal. After residing for a short period in the liver cells, the parasites then infect the red blood cells, thereby wreaking havoc in the human body. The malaria parasites are able to reproduce both through sexual reproduction when they inhabit a mosquito (and are transmitted to the host) and via asexual reproduction when they reside in the human body (replication in the host). For scientists to successfully counteract malaria, they must tackle both the transmission from person to person by the mosquitoes and the spread of the malaria parasites in the infected individual.

The potassium channels are important for all cells

All animal and plant cells contain so-called ion channels. These are small pores which allow ions to move in and out through an otherwise impermeable cell membrane. The potassium channels are a sub-type of ion channel, found in all cells. Though the function of the potassium channels vary, they play a crucial role in a variety of biological processes, e.g. influencing the ability of the nerves to send electrical signals and the heart muscle to contract rhythmically.

Assistant Professor Peter Ellekvist explains that his interest in malaria led to a research collaboration with Professor Dan Klærke, who studies potassium channels at the University of Copenhagen. In collaboration with Professor Nirbhay Kumar and other colleagues from the Malaria Research Institute at John Hopkins University in Baltimore, the two researchers were able to manipulate the parasite's genes so as to ensure that the potassium channel no longer functioned. To their surprise, however, this intervention did not, in the first instance, appear to have any effect on the parasites.

"The gene knock-out parasites essentially killed the mice in the animal tests just as quickly as the "natural" parasites, that had not undergone genetic manipulation," explains Peter Ellekvist. "However, we found that the only parasites that were unable to reproduce sexually, were those with non-functioning potassium channels."

The experiments had effectively disrupted the insect's ability to pass on the disease.

Further research required

The next step for the research team is to examine whether parasites with non-functioning potassium channels react differently to anti-malaria drugs. A success here would allow the researchers to break the second phase of the infection cycle and prevent the asexual reproduction of the malaria parasites that have already gained access to the human body. Blocking the potassium channels of parasites in the body could, for example, render them more susceptible to anti-malaria drugs. Further testing is also required to see whether the manipulation of the potassium channels may also affect the other stages of the parasites lifecycle, such as their development within the liver cells.

Sandra Szivos | alfa
Further information:
http://healthsciences.ku.dk/newslist/potassium/

Further reports about: Animal Ion Malaria parasite potassium

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>