Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers block the transmission of malaria in animal tests

By disrupting the potassium channel of the malaria parasite, a team of researchers has been able to prevent the malaria parasites from forming in mosquitoes and has thereby broken the cycle of infection during recent animal tests.

By genetically altering the malaria parasite through gene knock-out technology, a research team consisting of scientists at the University of Copenhagen and John Hopkins University, Baltimore, has prevented the parasite from going through the normal stages of its life cycle and developing a cyst (egg-like structure or occyst), which spawns new infectious parasites."

As it is exclusively the parasites from these oocysts that can infect new individuals, we were able to prevent the disease from being transmitted to the animals in our tests", explains Assistant Professor, Peter Ellekvist from the University of Copenhagen.

The findings have been published in the scientific journal Proceedings of the National Academy of Sciences, USA, (2008 105: 6398-6402).

... more about:
»Animal »Ion »Malaria »parasite »potassium

The intervention "disrupts" the parasites complex life cycle

The malaria parasite has an extremely complicated lifecycle, which starts with the fertilisation of the parasites male and female gametes and the formation of an oocyst, in the mosquito's stomach wall. The oocyst further develops into sporozoittes, which travel up the mosquito's salivary gland and from there are transmitted to people, when the mosquito secures its next blood meal. After residing for a short period in the liver cells, the parasites then infect the red blood cells, thereby wreaking havoc in the human body. The malaria parasites are able to reproduce both through sexual reproduction when they inhabit a mosquito (and are transmitted to the host) and via asexual reproduction when they reside in the human body (replication in the host). For scientists to successfully counteract malaria, they must tackle both the transmission from person to person by the mosquitoes and the spread of the malaria parasites in the infected individual.

The potassium channels are important for all cells

All animal and plant cells contain so-called ion channels. These are small pores which allow ions to move in and out through an otherwise impermeable cell membrane. The potassium channels are a sub-type of ion channel, found in all cells. Though the function of the potassium channels vary, they play a crucial role in a variety of biological processes, e.g. influencing the ability of the nerves to send electrical signals and the heart muscle to contract rhythmically.

Assistant Professor Peter Ellekvist explains that his interest in malaria led to a research collaboration with Professor Dan Klærke, who studies potassium channels at the University of Copenhagen. In collaboration with Professor Nirbhay Kumar and other colleagues from the Malaria Research Institute at John Hopkins University in Baltimore, the two researchers were able to manipulate the parasite's genes so as to ensure that the potassium channel no longer functioned. To their surprise, however, this intervention did not, in the first instance, appear to have any effect on the parasites.

"The gene knock-out parasites essentially killed the mice in the animal tests just as quickly as the "natural" parasites, that had not undergone genetic manipulation," explains Peter Ellekvist. "However, we found that the only parasites that were unable to reproduce sexually, were those with non-functioning potassium channels."

The experiments had effectively disrupted the insect's ability to pass on the disease.

Further research required

The next step for the research team is to examine whether parasites with non-functioning potassium channels react differently to anti-malaria drugs. A success here would allow the researchers to break the second phase of the infection cycle and prevent the asexual reproduction of the malaria parasites that have already gained access to the human body. Blocking the potassium channels of parasites in the body could, for example, render them more susceptible to anti-malaria drugs. Further testing is also required to see whether the manipulation of the potassium channels may also affect the other stages of the parasites lifecycle, such as their development within the liver cells.

Sandra Szivos | alfa
Further information:

Further reports about: Animal Ion Malaria parasite potassium

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>