Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Arsenic and New Rice

10.06.2008
Amid recent reports of dangerous levels of arsenic being found in some baby rice products, scientists have found a protein in plants that could help to reduce the toxic content of crops grown in environments with high levels of this poisonous metal.

Publishing in the open access journal BMC Biology, a team of Scandinavian researchers has revealed a set of plant proteins that channel arsenic in and out of cells.

Arsenic is acutely toxic and a highly potent carcinogen, but is widespread in the earth's crust and easily taken up and accumulated in crops. Contaminated water is the main source of arsenic poisoning, followed by ingestion of arsenic-rich food, especially rice that has been irrigated with arsenic-contaminated water. According to the WHO, arsenic has been found approaching or above guideline limits in drinking water in Argentina, Australia, Bangladesh, Chile, China, Hungary, India, Mexico, Peru, Thailand, and the US.

Until now, scientists have been unable to identify which proteins are responsible for letting arsenite, the form of arsenic that damages cellular proteins, into plant cells. Now Gerd Bienert and his colleagues from the University of Copehangen, Denmark and the University of Gothenburg, Sweden, are the first to show that a family of transporters, called nodulin26-like intrinsic protein (NIPs), can move arsenite across a plant cell membrane. NIPs are related to aquaglyceroporins found in microbes and mammalian cells and which have already been shown to function as arsenite channels in these other organisms.

... more about:
»NIP »Protein »arsenic »arsenite »yeast

Bienert's team put the plant genes coding for different NIP transporters into yeast cells in order to test the cells for arsenic sensitivity. The researchers found that the growth of yeast containing certain plant NIPs was suppressed when arsenite, one of the predominant forms of arsenic found in soil, was added to the mix. They showed that the arsenite was channelled by NIPs and accumulated inside the yeast cells. Further investigations showed that only a subgroup of NIPs had arsenite transport capabilities, and have now been identified as metalloid channels in plants.

More surprisingly, the researchers also found that when they added arsenate some yeast, cells actually grew better and arsenite was released out of the cells. “It appears that some NIPs don't just transport arsenite in one direction”, says Bienert. “They are bidirectional and, given the right conditions, can clear cells of toxic arsenite as well as accumulate it. This striking exit of the accumulated arsenite in cells could have an important role to play in the detoxification of plants, especially coupled with possibility of engineering a transporter that discriminates against arsenite uptake in the first place.”

Charlotte Webber | alfa
Further information:
http://www.biomedcentral.com/bmcbiol/
http://www.biomedcentral.com/

Further reports about: NIP Protein arsenic arsenite yeast

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>