Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Arsenic and New Rice

10.06.2008
Amid recent reports of dangerous levels of arsenic being found in some baby rice products, scientists have found a protein in plants that could help to reduce the toxic content of crops grown in environments with high levels of this poisonous metal.

Publishing in the open access journal BMC Biology, a team of Scandinavian researchers has revealed a set of plant proteins that channel arsenic in and out of cells.

Arsenic is acutely toxic and a highly potent carcinogen, but is widespread in the earth's crust and easily taken up and accumulated in crops. Contaminated water is the main source of arsenic poisoning, followed by ingestion of arsenic-rich food, especially rice that has been irrigated with arsenic-contaminated water. According to the WHO, arsenic has been found approaching or above guideline limits in drinking water in Argentina, Australia, Bangladesh, Chile, China, Hungary, India, Mexico, Peru, Thailand, and the US.

Until now, scientists have been unable to identify which proteins are responsible for letting arsenite, the form of arsenic that damages cellular proteins, into plant cells. Now Gerd Bienert and his colleagues from the University of Copehangen, Denmark and the University of Gothenburg, Sweden, are the first to show that a family of transporters, called nodulin26-like intrinsic protein (NIPs), can move arsenite across a plant cell membrane. NIPs are related to aquaglyceroporins found in microbes and mammalian cells and which have already been shown to function as arsenite channels in these other organisms.

... more about:
»NIP »Protein »arsenic »arsenite »yeast

Bienert's team put the plant genes coding for different NIP transporters into yeast cells in order to test the cells for arsenic sensitivity. The researchers found that the growth of yeast containing certain plant NIPs was suppressed when arsenite, one of the predominant forms of arsenic found in soil, was added to the mix. They showed that the arsenite was channelled by NIPs and accumulated inside the yeast cells. Further investigations showed that only a subgroup of NIPs had arsenite transport capabilities, and have now been identified as metalloid channels in plants.

More surprisingly, the researchers also found that when they added arsenate some yeast, cells actually grew better and arsenite was released out of the cells. “It appears that some NIPs don't just transport arsenite in one direction”, says Bienert. “They are bidirectional and, given the right conditions, can clear cells of toxic arsenite as well as accumulate it. This striking exit of the accumulated arsenite in cells could have an important role to play in the detoxification of plants, especially coupled with possibility of engineering a transporter that discriminates against arsenite uptake in the first place.”

Charlotte Webber | alfa
Further information:
http://www.biomedcentral.com/bmcbiol/
http://www.biomedcentral.com/

Further reports about: NIP Protein arsenic arsenite yeast

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

NASA laser communications to provide Orion faster connections

30.03.2017 | Physics and Astronomy

Reusable carbon nanotubes could be the water filter of the future, says RIT study

30.03.2017 | Studies and Analyses

Unique genome architectures after fertilisation in single-cell embryos

30.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>