Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brucella abortus S19 genome sequenced; points toward virulence genes

09.06.2008
Researchers at the Virginia Bioinformatics Institute at Virginia Tech and the National Animal Disease Center in Ames, Iowa, and collaborators at 454 Life Sciences of Branford, Conn., have sequenced the genome of Brucella abortus strain S19.

Strain S19 is a naturally occurring strain of B. abortus that does not cause disease and was discovered by Dr. John Buck in 1923. It has been used for more than six decades as vaccine that protects cattle against brucellosis, an infectious disease caused by other strains of B. abortus that leads to reproductive failure in livestock.

Scientists have long wanted to know what genetic features make strain S19 suitable for use as a vaccine in cattle because it may hold the secret as to why other Brucella strains cause disease and trigger the abortion of developing embryos in livestock. The researchers have discovered a group of 24 genes that are linked to virulence by making comparisons of the newly available S19 genome sequence to previously sequenced genomes of two virulent strains of B. abortus. The paper "Genome sequence of Brucella abortus vaccine strain S19 compared to virulent strains yields candidate virulence genes" was published recently in PLoS One (May 2008, Volume 3, Issue 5, e2193).

Oswald Crasta, project director at VBI's Cyberinfrastructure Group and the corresponding author on the paper, remarked: "We have been able to leverage rapid sequencing of the S19 genome on the Roche GS-20™ and GS-FLX™ platforms, and comparative genomics narrowed down the search for Brucella virulence factors to a small group of genes. Of particular interest are four genes that show consistently large sequence differences in S19 compared with two fully sequenced virulent strains." He added: "Further studies are underway to characterize the short list of protein differences that appear to be involved in cellular processes ranging from lipid transport and metabolism to transcription and protein transport. We believe that this characterization will explain why strain S19 has been such a successful vaccine over the years and why infection with other strains leads to disease."

... more about:
»Brucella »GS-FLX™ »Genome »Roche »S19 »VBI »Vaccine »abortus »genes »sequenced »virulence

The initial sequencing was performed on the Roche GS-20™ at 454 Life Sciences, and subsequently repeated after the installation of the Roche GS-FLX™ in the VBI Core Laboratory Facility. Additional traditional sequencing methods were used in VBI's Core Laboratory Facility to completely finish the S19 genome sequence. Clive Evans, Associate Director of the Core Laboratory Facility at VBI, remarked: "The S19 sequence was the first bacterial genome sequenced at VBI with the new Roche GS-FLX™, which was installed in January 2007. The Roche GS-FLX™ sequence allowed us to verify and improve the original sequence, and reduced the number of gaps that needed to be covered with traditional sequencing methods. We were very pleased with the performance of the Roche GS-FLX™."

Bruno Sobral, Executive and Scientific Director of VBI and co-author, remarked: "The complete genome sequence of strain S19 helps us understand the causal molecular agents of brucellosis." He remarked: "Brucella is able to pass from animals to humans with relative ease and poses a significant public health burden for workers in the livestock industry. It is also a possible agent for agricultural, civilian and military bioterrorism. This emphasizes the need for researchers to have a handle on the genetic makeup of the different Brucella strains."

Barry Whyte | EurekAlert!
Further information:
http://www.vbi.vt.edu

Further reports about: Brucella GS-FLX™ Genome Roche S19 VBI Vaccine abortus genes sequenced virulence

More articles from Life Sciences:

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

nachricht Party discipline for jumping genes
22.09.2017 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

Hope to discover sure signs of life on Mars? New research says look for the element vanadium

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>