Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Are microbes the answer to the energy crisis?

06.06.2008
The answer to the looming fuel crisis in the 21st century may be found by thinking small, microscopic in fact. Microscopic organisms from bacteria and cyanobacteria, to fungi to microalgae, are biological factories that are proving to efficient sources of inexpensive, environmentally friendly biofuels that can serve as alternatives to oil, according to research presented at the 108th General Meeting of the American Society for Microbiology in Boston.

When it comes to alternative fuels, currently ethanol is king. Almost all ethanol produced in the United States is fermented from readily available sugars in corn. Ethanol from corn has also come under much criticism lately, accused of being responsible for rising food prices.

Researchers are looking at alternate biomasses as food for microorganisms to ferment into ethanol. The most attractive are known as lignocellulosic biomass and include wood residues (including sawmill and paper mill discards), municipal paper waste, agricultural residues (including sugarcane bagasse) and dedicated energy crops (like switchgrass). The problem is, unlike corn, the sugars necessary for fermentation are trapped inside the lignocellulose.

Govind Nadathur and his colleagues at the University of Puerto Rico have been looking at unusual ecosystems and unusual organisms to find enzymes to help extract these sugars.

"Wood falls into the ocean. It disappears. What's eating this biomass? We found mollusks that eat the wood, with the help of bacteria in their stomachs that produce enzymes that break down the cellulose. We found something similar in termites," says Nadathur. They plan on using these enzymes as a key step in a closed, integrated system that would not only produce ethanol, but would also produce sugar, molasses, hibiscus flowers and biodiesel with a minimum of waste.

It all starts with sugar cane and hibiscus flowers, grown on local lands. These produce not only the obvious products such as refined sugar, molasses (which is used to make rum) and flowers, but also a large amount of waste in the form of biomass. Using the enzymes in their library, Nadathur and his colleagues could break down the biomass to sugars and ferment them to ethanol, trapping the carbon dioxide that is produced during fermentation. They then would feed the carbon dioxide to microalgae in ponds that would produce a polymer that could be refined into biodiesel or jet fuel. The spent microalgae could then be harvested and used as fertilizer for the next round of sugar cane and hibiscus, thereby closing the cycle.

"There used to be a booming sugarcane industry in Puerto Rico, but in the mid-1990s it died. It could not survive economically. By creating a closed-loop system that utilizes the waste to create additional products and feeds back upon itself, suddenly growing sugar cane becomes economically feasible again," says Nadathur.

They are currently working with a company called Sustainable Agrobiotech of Puerto Rico to build a pilot program which they hope to have running by early 2009. Should the pilot program prove successful, there is plenty of adjacent farmland to upscale.

Another promising biofuel is hydrogen. Already many car manufacturers are producing hydrogen concept cars and pilot programs using hydrogen-powered buses already are gaining acceptance in Los Angeles, with Burbank announcing the addition of a hydrogen-powered bus to its fleet in the summer of 2008. As more buses come online, there will be a greater need for hydrogen. Unfortunately, current chemical manufacturing processes for hydrogen are not that efficient or use fossil fuels as a source.

Sergei Markov of Austin Peay State University has developed a prototype bioreactor that uses the purple bacterium Rubrivivax gelatinosus to produce enough hydrogen to power a small motor.

"Certain purple bacteria, which usually grow in the mud of various ponds and lakes, have the ability to convert water and carbon monoxide into hydrogen gas (note: only a certain set could use CO). The problem was how to effectively supply each bacterial cell in a liquid bacterial soup with gaseous carbon monoxide," says Markov.

The answer was attaching the bacteria to numerous tiny hollow fibers inside an artificial kidney cartridge. Water and gasses can freely diffuse through the fibers, but bacteria, due to their large size, cannot. The hydrogen gas from a small fifty milliliter "artificial kidney bioreactor" has been directly injected into fuel cells and has produced enough electricity to power small motors and lamps. The only drawback is that carbon monoxide is not readily available , but Markov says it can be easily produced from biomass using a specific thermochemical process. There are also other bacteria that produce carbon monoxide.

One researcher and her lab, though, are investigating what could perhaps be considered the holy grail of hydrogen production: pure hydrogen from only water and sunlight, with a little bacterial help. Pin Ching Maness of the National Renewable Energy Lab in Golden, Colorado, is researching cyanobacteria that harness the power of the sun to break the bonds in water, separating the hydrogen from the oxygen. There is a problem. One of the hydrogenase enzymes the cyanobacteria uses in this process is sensitive to O2, which makes sustained hydrogen production extremely difficult.

Luckily a certain purple bacterium use a similar hydrogenase, but one that is tolerant to O2. Maness and her colleagues have identified the genes that the purple bacterium uses to produce the tolerant hydrogenase. They have also identified the genes a particular model cyanobacterium uses to produce the sensitive hydrogenase and have knocked it out. They are currently in the process of cloning the genes for the tolerant enzyme into the model cyanobacterium. The next step is to verify that the genes have been successfully incorporated into the genome and are expressed. Over the next few years additional research will need to be done to ensure all the requirements are there for the construction of an active hydrogenase enzyme.

Jim Sliwa | EurekAlert!
Further information:
http://www.asmusa.org

Further reports about: Biomass Ethanol Hydrogen Hydrogenase Nadathur Purple bacteria enzyme genes monoxide produce

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Millions through license revenues

27.04.2017 | Health and Medicine

The TU Ilmenau develops tomorrow’s chip technology today

27.04.2017 | Information Technology

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>