Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Crystal clear savings for drug giants

06.06.2008
Drug companies could save millions thanks to a new technology to monitor crystals as they form.

The technique, developed by University of Leeds engineers, is a potentially invaluable tool in drug manufacture, where controlling crystal forms is crucial both to cost and product safety.

Most drug compounds are crystalline and their structure can affect both their physical attributes and their performance. Changes to these structures are often caused by undetected fluctuations in the process.

“If you were to use a pencil to write on glass you wouldn't get very far, but use a diamond and you could write your name. Yet both are pure forms of carbon. It's the same with different solid forms of the same drug; they can have completely different properties,” says Dr Robert Hammond of the University’s Faculty of Engineering, who leads the research team.

... more about:
»Technology »developed

“Drug molecules are becoming increasingly complex and the challenges involved in processing them means that it is not always possible to successfully produce the desired form reliably. That’s why there’s such enormous potential for our system. We’re now able to look at crystals as they are forming in a reactor, something that has never been done before.”

The new technology identifies and monitors changes in crystal structures on-line, providing a method of ensuring production of the desired drug compounds. The bespoke system has been developed by engineers at the University of Leeds in collaboration with Bede X-Ray Metrology as part of the EPSRC funded Chemicals Behaving Badly programme.

Called polymorphism, changes in crystal structure during processing can lead to huge delays in bringing drugs to market, costing drug companies many millions of pounds. It can also lead to challenges to intellectual property protection. There have been a number of high profile cases where patents have been challenged by companies making an established formulation using a different polymorph.

“It’s an enormous problem for drug companies,” explains Dr Hammond. “Their patents are extremely valuable – they are granted for 20 years, but it can take ten years to bring a new drug to market, which only leaves another ten to recoup the cost of its development.”

The technology developed at Leeds is based on the ‘gold standard’ method for monitoring crystal structures - powder X-ray diffraction, the primary tool for studying polymorphs.

“There’s enormous commercial potential for this technology, for example it could be developed to work at manufacturing plant scales and can be applied to speciality chemical industries as well,” says Dr Hammond. “We’re interested in talking to pharmaceutical and speciality chemical companies that can help us drive this forward.”

Jo Kelly | alfa
Further information:
http://www.leeds.ac.uk

Further reports about: Technology developed

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>