Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Talking to Cells

Sweet nothings: Artificial vesicles and bacterial cells communicate by way of sugar components

For an organism to develop and function, the individual cells must exchange information, or communicate, with each other. Is it possible to learn their language and “talk to” the cells?

Yes it is: Cameron Alexander and George Pasparakis at the University of Nottingham (UK) have been able to facilitate a conversation between bacterial cells and artificial polymer vesicles. In the journal Angewandte Chemie they report that this first communication occurred by way of sugar groups on the vesicle surface. The vesicles subsequently transfer information to the cells—in the form of dye molecules.

Complex structures made of many sugar components on the surfaces of cells are the “language” used for processes such as cell recognition, for example, in the differentiation of tissues or the identification of endogenous cells and foreign invaders. Scientists would like to be able to use this glycocode to “address” target cells and to intervene directly in cellular processes to treat diseases or to guide regeneration of damaged tissues.

... more about:
»Molecules »Polymer »bacteria »vesicle

The British scientists took an interesting route to learn more about the “language” of cells: they constructed vesicles, tiny capsules whose outer shell is made of special polymer building blocks. Their special trick: the polymer chains are equipped with side chains bearing glucose units that wind up being exposed on the vesicle surface.

The researchers brought the vesicles together with bacteria that have glucose-binding proteins on their surface. The behavior of the bacteria varies depending on the polymer’s composition and the size of the vesicles. Among the bacteria were some individuals that enter into very strong bonds with large vesicles. These associated bacteria are then in a position to receive molecular “information” from the vesicles: dye molecules that were previously placed in the vesicles transferred specifically into the interior of these bacteria.

“Our vesicles can be viewed as simple replicas of living cells,” says Alexander, “that can communicate with real cells by way of the glycocode as well as through signal molecules inside the vesicles.” Possible applications include drug transporters that deliver their cargo to specific target cells, or antibiotic transporters that deliver their toxic load exclusively to infectious agents.

Author: Cameron Alexander, University of Nottingham (UK),

Title: Sweet Talking Double Hydrophilic Block Copolymer Vesicles

Angewandte Chemie International Edition 2008, 47, No. 26, 4847–4850, doi: 10.1002/anie.200801098

Cameron Alexander | Angewandte Chemie
Further information:

Further reports about: Molecules Polymer bacteria vesicle

More articles from Life Sciences:

nachricht ‘Farming’ bacteria to boost growth in the oceans
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Calcium Induces Chronic Lung Infections
24.10.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>