Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

HSPH researchers discover natural inflammation-fighting mechanism in body-fat cells

05.06.2008
Protective mechanism fails when obesity sets in

Scientists have discovered a previously unknown molecular signaling pathway in body fat cells that normally acts to suppress harmful inflammation. Cellular stress caused by obesity, however, can override this protective function and convert the pathway into a trigger of chronic inflammation that raises the risk of insulin resistance, diabetes, and other metabolic disorders.

Reporting in the journal Cell Metabolism, researchers from the Harvard School of Public Health (HSPH) said they have shown for the first time that fat-storing cells, or adipocytes, contain a protective anti-inflammatory immune mechanism that prevents the cells from over-reacting to inflammation-causing stimuli, such as fatty acids in the diet.

This signaling pathway serves as a natural counterbalance to a parallel signaling chain that promotes inflammation and can lead to insulin resistance -- a prelude to diabetes -- and other ailments such as heart disease, said the authors. Chih-Hao Lee, Assistant Professor of Genetics and Complex Diseases at HSPH, was the senior author. Kihwa Kang, Research Fellow in the HSPH Department of Genetics and Complex Diseases, was first author.

In lean people, the dueling pathways maintain a healthy balance -- but only up to a point. "Overt obesity eventually overwhelms the protective effect of this pathway and flips it into the pro-inflammatory pathway," said Lee.

The scientists also identified the molecular switch that determines which pathway is activated under different conditions. It may be possible, they suggest, to develop drugs that would boost the protective side of the two-pronged mechanism to more strongly suppress inflammation and reduce the risk of insulin resistance, diabetes, or other ailments.

In identifying the compensatory pathway and molecular switch, the scientists have added a new element to the growing understanding of how obesity exerts its unhealthful effects through signals generated by adipocytes.

Previous research, including important discoveries by Gökhan Hotamisligil, chair of the HSPH Department of Genetics and Complex Diseases, has shown that as they become enlarged with fat, adipocytes produce pro-inflammatory stimuli, such as free fatty acids. These stimuli induce the activation of immune cells residing within fat tissues, called M1 macrophages, which in turn release pro-inflammatory cytokines, such as TNFalpha, that cause fat tissue dysfunction and insulin resistance. Cytokines are messenger chemicals that enable communication between immune cells but could also be produced by fat cells.

Another type of macrophage, known as M2, has the opposite effect, quelling the inflammatory response to free fatty acids. The process that induces M2 macrophages is known as "alternative activation." Until now, the mechanisms controlling M2 macrophage activation within fat tissues had been unclear, as was whether adipocytes themselves controlled this process. The results reported in Lee's paper, said Hotamisligil (who was not involved in the research), indicate that "the adipocytes actually force macrophages to go one way or the other."

What activates the M2 pathway within fat tissues, Lee and his colleagues discovered, is the fat cells' production of the kind of cytokines that activate M2 macrophages. These so-called "Th2" cytokines include IL 13 and IL4. (M1 macrophages are activated by a different set of cytokines.)

The researchers found that the key to the Th2 activation switch is a molecule known as PPAR-d within macrophages. PPAR-d is a "nuclear receptor" that receives the Th2 cytokine signals and turns on a cascade of genes and proteins that results in M2 macrophage activation.

Experiments showed that mice in which the PPAR-D function was knocked out could not switch on the M2 macrophage pathway. When fed a high-fat diet, those mice became obese and developed insulin resistance, confirming the key role of PPAR-d as a switch governing the two pathways.

To their surprise, Lee and his coworkers found that the same switching mechanism is present in hepatocytes, or liver cells, and macrophages in the liver, where they control metabolism of fats. Mice lacking PPAR-d developed the condition known as "fatty liver," which also occurs in humans who have metabolic disruption.

Given the enormous problem of obesity and diabetes in the United States and elsewhere, Lee is hopeful that drugs targeting PPAR-d may be useful in treating insulin resistance and diabetes. And now that the same mechanism has been identified in liver cells, the same strategy might lead to novel therapies for fatty liver. Finally, the link between obesity, inflammation and atherosclerosis suggests that PPAR-d-targeted drugs could have potential in preventing heart disease as well.

Christina Roache | EurekAlert!
Further information:
http://www.hsph.harvard.edu

Further reports about: Cells Cytokine Diabetes HDL-cholesterol HSPH Insulin PPAR-d adipocytes inflammation liver macrophage obesity protective

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Supercomputing helps researchers understand Earth's interior

23.05.2017 | Earth Sciences

Study identifies RNA molecule that shields breast cancer stem cells from immune system

23.05.2017 | Life Sciences

Turmoil in sluggish electrons’ existence

23.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>