Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

HSPH researchers discover natural inflammation-fighting mechanism in body-fat cells

05.06.2008
Protective mechanism fails when obesity sets in

Scientists have discovered a previously unknown molecular signaling pathway in body fat cells that normally acts to suppress harmful inflammation. Cellular stress caused by obesity, however, can override this protective function and convert the pathway into a trigger of chronic inflammation that raises the risk of insulin resistance, diabetes, and other metabolic disorders.

Reporting in the journal Cell Metabolism, researchers from the Harvard School of Public Health (HSPH) said they have shown for the first time that fat-storing cells, or adipocytes, contain a protective anti-inflammatory immune mechanism that prevents the cells from over-reacting to inflammation-causing stimuli, such as fatty acids in the diet.

This signaling pathway serves as a natural counterbalance to a parallel signaling chain that promotes inflammation and can lead to insulin resistance -- a prelude to diabetes -- and other ailments such as heart disease, said the authors. Chih-Hao Lee, Assistant Professor of Genetics and Complex Diseases at HSPH, was the senior author. Kihwa Kang, Research Fellow in the HSPH Department of Genetics and Complex Diseases, was first author.

In lean people, the dueling pathways maintain a healthy balance -- but only up to a point. "Overt obesity eventually overwhelms the protective effect of this pathway and flips it into the pro-inflammatory pathway," said Lee.

The scientists also identified the molecular switch that determines which pathway is activated under different conditions. It may be possible, they suggest, to develop drugs that would boost the protective side of the two-pronged mechanism to more strongly suppress inflammation and reduce the risk of insulin resistance, diabetes, or other ailments.

In identifying the compensatory pathway and molecular switch, the scientists have added a new element to the growing understanding of how obesity exerts its unhealthful effects through signals generated by adipocytes.

Previous research, including important discoveries by Gökhan Hotamisligil, chair of the HSPH Department of Genetics and Complex Diseases, has shown that as they become enlarged with fat, adipocytes produce pro-inflammatory stimuli, such as free fatty acids. These stimuli induce the activation of immune cells residing within fat tissues, called M1 macrophages, which in turn release pro-inflammatory cytokines, such as TNFalpha, that cause fat tissue dysfunction and insulin resistance. Cytokines are messenger chemicals that enable communication between immune cells but could also be produced by fat cells.

Another type of macrophage, known as M2, has the opposite effect, quelling the inflammatory response to free fatty acids. The process that induces M2 macrophages is known as "alternative activation." Until now, the mechanisms controlling M2 macrophage activation within fat tissues had been unclear, as was whether adipocytes themselves controlled this process. The results reported in Lee's paper, said Hotamisligil (who was not involved in the research), indicate that "the adipocytes actually force macrophages to go one way or the other."

What activates the M2 pathway within fat tissues, Lee and his colleagues discovered, is the fat cells' production of the kind of cytokines that activate M2 macrophages. These so-called "Th2" cytokines include IL 13 and IL4. (M1 macrophages are activated by a different set of cytokines.)

The researchers found that the key to the Th2 activation switch is a molecule known as PPAR-d within macrophages. PPAR-d is a "nuclear receptor" that receives the Th2 cytokine signals and turns on a cascade of genes and proteins that results in M2 macrophage activation.

Experiments showed that mice in which the PPAR-D function was knocked out could not switch on the M2 macrophage pathway. When fed a high-fat diet, those mice became obese and developed insulin resistance, confirming the key role of PPAR-d as a switch governing the two pathways.

To their surprise, Lee and his coworkers found that the same switching mechanism is present in hepatocytes, or liver cells, and macrophages in the liver, where they control metabolism of fats. Mice lacking PPAR-d developed the condition known as "fatty liver," which also occurs in humans who have metabolic disruption.

Given the enormous problem of obesity and diabetes in the United States and elsewhere, Lee is hopeful that drugs targeting PPAR-d may be useful in treating insulin resistance and diabetes. And now that the same mechanism has been identified in liver cells, the same strategy might lead to novel therapies for fatty liver. Finally, the link between obesity, inflammation and atherosclerosis suggests that PPAR-d-targeted drugs could have potential in preventing heart disease as well.

Christina Roache | EurekAlert!
Further information:
http://www.hsph.harvard.edu

Further reports about: Cells Cytokine Diabetes HDL-cholesterol HSPH Insulin PPAR-d adipocytes inflammation liver macrophage obesity protective

More articles from Life Sciences:

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

nachricht Research reveals how order first appears in liquid crystals
23.05.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>