Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mutations Induce Severe Cardiomyopathy

04.06.2008
Mutations in three genes that are important for heart contraction can induce left ventricular noncompaction (LVNC), a special form of cardiomyopathy.

This was a key finding from current research conducted by Dr. Sabine Klaassen, Susanne Probst, and Prof. Ludwig Thierfelder of the Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch, Prof. Erwin Oechslin (Adult Congenital Cardiac Centre, Toronto, Canada) and Prof. Rolf Jenni (Cardiovascular Center, Zürich, Switzerland).

In LVNC, the myocardial tissue of the left ventricle takes on a sponge-like appearance and protrudes into the ventricle which can greatly impair the pumping performance of the heart.

Of the 63 LVNC patients studied, the scientists found 11 patients (17 percent) with several myocardial gene mutations. The researchers suspect that these genetic mutations can trigger severe cardiomyopathy. In the future, genetic testing can determine whether individual family members of the affected patients also carry this mutation and are, thus, predisposed to LVNC. The results of the study have just been published in the journal Circulation (2008, Vol. 117, pp. 2893-2901)*.

... more about:
»Genetic »Klaassen »LVNC »MD1 »MD4 »Muscle »myocardial

The heart muscle makes the heart beat about seventy times per minute, thus providing the entire body with oxygen and nutrients. Dysfunction of the heart muscle may lead to cardiac arrhythmia, cardiac insufficiency, and even heart failure.

In LVNC, a disease which was just discovered a few years ago, the left ventricle of the heart resembles that of an embryo. Since the disease can also occur in small children, scientists assumed it was a developmental disorder of the heart muscle tissue.

Now, Dr. Klaassen and her colleagues have been able to show that the disease is due to a genetic defect and is thus a familial disease. It affects genes whose proteins are responsible for contraction and, thus, for the pumping function of the heart muscle, i.e. genes encoding beta-myosin heavy chain, alpha-cardiac actin, and troponin T.

Genetic testing on individual families showed that the probability of an affected parent passing on the gene mutations to his or her children is 50 percent. "That is why gene testing of these families is so important," Dr. Klaassen said.

If a gene test turns out to be negative, the tested person can be certain that he or she will not get LVNC. But if the test is positive, the implication is not so clear. "As a consequence of the altered heart muscle tissue, the affected person may develop functional myocardial impairment later in life," Dr. Klaassen explained.

However, a mutation in these genes need not inevitably lead to myocardial insufficiency. "We examined a 70-year-old patient who did not show any symptoms of the disease although she had the mutation," the cardiologist added. "Apparently, other genetic factors, as well as environmental factors, like a healthy lifestyle, influence the manifestation of the disease."

*Mutations in Sarcomere Protein Genes in Left Ventricular Noncompaction

Sabine Klaassen, MD1,2*; Susanne Probst, MSc1*; Erwin Oechslin, MD3; Brenda Gerull, MD1, Gregor Krings, MD2; Pia Schuler, MD4; Matthias Greutmann, MD4; David Hürlimann, MD4; Mustafa Yegitbasi5, MD; Lucia Pons, MD6, Michael Gramlich, MD1; Jörg-Detlef Drenckhahn, MD1; Arnd Heuser, MD1, Felix Berger, MD2,5; Rolf Jenni, MD4; Ludwig Thierfelder, MD1,7

1)Max-Delbrück-Center for Molecular Medicine, Berlin, Germany; 2)Clinic of Pediatric Cardiology, Charité, Humboldt University Berlin, Germany; 3)Adult Congenital Cardiac Centre at Peter Munk Cardiac Centre, University Health Network/Toronto General Hospital, Toronto, Canada; 4)Cardiovascular Center, Division of Echocardiography, University Hospital Zürich, Zürich, Switzerland; 5)Department of Congenital Heart Defects/Pediatric Cardiology, German Heart Institute Berlin, Berlin, Germany; 6)Ospedale Regionale di Mendrisio Beata Vergine, Mendrisio, Switzerland; 7)Helios Clinic Berlin-Buch, Charité, Humboldt University Berlin, Germany

Barbara Bachtler
Press and Public Affairs
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
Robert-Rössle-Str. 10
13125 Berlin
Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | idw
Further information:
http://www.mdc-berlin.de/en/news

Further reports about: Genetic Klaassen LVNC MD1 MD4 Muscle myocardial

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>