Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Parasitoid turns host into bodyguard

04.06.2008
Parasites can induce dramatic changes of behaviour in their host species. This behaviour is thought to be detrimental to the host, but beneficial to the parasite.

In a joint publication in PLoS One, researchers from the University of Amsterdam and University of Viçosa (Brazil) show evidence of spectacular behavioural changes induced by a parasitic wasp in the caterpillar of a moth species.

After the wasp has oviposited eggs in the body of the caterpillar, these develop into larvae that live on the body fluids of the caterpillar. After the wasp larvae crawl out of the caterpillar to pupate, the caterpillar acts as a bodyguard to defend them from predator attacks.

A research team from the Institute for Biodiversity and Ecosystem Dynamics (IBED) of the University of Amsterdam worked together with the Entomology section of the Federal University of Viçosa (Brazil) to study such behavioural changes induced by parasites. In a recent publication in the new electronic journal PLoS One, the researchers offer evidence that behavioural changes of the host are beneficial to the parasite in the field. In Brazil, the team studied the caterpillars of a moth that feed on leaves of the native guava tree and an exotic eucalyptus.

These small caterpillars are attacked by insect parasitoid wasps, which then quickly insert up to 80 eggs into them. Inside the caterpillar host, a cruel drama takes place: the eggs of the parasitoid hatch and the larvae feed on the body fluids of the host. The caterpillar continues feeding, moving and growing like its unparasitised brothers and sisters. When the parasitoid larvae are full-grown, they emerge together through the host’s skin, and start pupating nearby. Unlike many other combinations of host and parasitoid, the host remains alive and displays spectacular changes in its behaviour: it stops feeding and remains close to the parasitoid pupae.

Moreover, it defends the parasitoid pupae against approaching predators with violent head-swings (see films via link below). The caterpillar dies soon after the adult parasitoids emerge from their pupae, so there can be no benefit whatsoever for it. In contrast, unparasitised caterpillars do not show any of these behavioural changes.

The research team found that parasitoid pupae that were guarded by caterpillars in the field suffered half as much predation as those without a bodyguard. Hence, the behavioural changes of the host result in increased survival of the parasitoids due to the host acting as a bodyguard of the parasitoid pupae. Whereas it is still unclear how the parasitoid changes the behaviour of its host, it is tempting to speculate. The research team found that one or two parasitoid larvae remained behind in the host. Perhaps these larvae affect the behaviour of the caterpillar, and sacrifice themselves for the good of their brothers and sisters.

Cause or effect?

There are many examples of parasites that induce spectacular changes in the behaviour of their host. Flukes, for example, are thought to induce ants, their intermediate host, to move up onto blades of grass during the night and early morning. There they firmly attach themselves to the substrate with their mandibles, and are thus consumed by grazing sheep, the fluke’s final host. In contrast, uninfected ants return to their nests during the night and the cooler parts of the day. Another example of behavioural change is that of terrestrial insects, parasitised by hairworms, which commit suicide by jumping into water allowing the adult hairworms to reproduce. Behavioural changes like these are thought to be induced by the parasite so as to increase its transmission to the final host, but there are alternative explanations. It is possible, for example, that the hosts already behaved differently before becoming infected. Hence, infection is a consequence of different behaviour, not its cause. Increased transmission can also be called into question: the behavioural changes of the host may result in increased attacks by other non-host animals, and this would seriously decrease the probability of transmission. Increased transmission should therefore always be tested under natural conditions. The research of the Dutch and Brazilian researchers is the most complete and convincing case for induction of behavioural changes, clearly showing that it is the parasite that profits from it.

This research was supported by the Tropical Research division of the Netherlands Organisation for Scientific Research (NWO-WOTRO).

Publication information:
‘Parasitoid increases survival of its pupae by inducing hosts to fight predators’. Amir H. Grosman, Arne Janssen, Elaine F. de Brito, Eduardo G. Cordeiro, Felipe Colares, Juliana Oliveira Fonseca, Eraldo R. Lima, Angelo Pallini and Maurice W. Sabelis. PloS One, June 4, 2008.

The online article can be viewed via: http://www.plosone.org/doi/pone.0002276. This website also includes accompanying images.

Laura Erdtsieck | alfa
Further information:
http://www.plosone.org/doi/pone.0002276
http://www.uva.nl

Further reports about: Bodyguard Host Transmission induce larvae parasite parasitoid pupae

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>