Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tumor Suppressor Genes Speed Up and Slow Down Aging in Engineered Mouse

03.06.2008
Mayo Clinic researchers have developed an animal model that can test the function of two prominent tumor suppressor genes, p16 and p19, in the aging process.

Scientists knew that both these genes were expressed at increased levels as humans and mice age, but their role in the aging process was not clear. Findings by the Mayo team show that p16 provides gas to accelerate cellular aging, while p19 stops that process.

The findings, to be published May 30 in the online issue of Nature Cell Biology, could help explain the development of some characteristics associated with aging, such as loss of muscle mass and strength or cataracts, and how they might be retarded.

“Scientists interested in aging have developed mice that lack p16 or p19, but these mice were not suitable for studies on aging because they all die of cancer before they even begin to age,” says the study’s first author, Darren Baker, a laboratory technician at Mayo Clinic and a doctoral candidate. “By crossing these mice with a mouse strain that ages five times faster than normal due to a mutation in the BubR1 gene, we were able to bypass this problem.”

... more about:
»Aging »p16 »p19

While other genes are involved in aging, the researchers firmly established that when too much p16 is produced, tissues start to age. Instead of driving aging, the p19 gene was found to counteract the effects of p16. This was completely unexpected, says Jan van Deursen, Ph.D., a molecular biologist at Mayo Clinic, because tissue culture experiments had predicted that p19 expression promotes aging.

Another important finding of the study is that initiation and progression of aging is caused, at least in part, by the accumulation of senescent or aging cells in tissues and organs. These senescent cells have an abnormal gene expression profile and secrete proteins that damage the surrounding cells, affecting tissue and organ function and aspects of aging.

The study was funded by the National Institutes of Health, the Ted Nash Foundation, and the Ellison Medical Foundation.

The study co-authors, all from Mayo Clinic, include Carmen Perez-Terzic, M.D., Ph.D; Fang Jin, M.D.; Kevin Pitel; Nicolas Niederländer, Ph.D.; Karthik Jeganathan; Satsuki Yamada, M.D., Ph.D; Santiago Reyes; Lois Rowe; H. Jay Hiddinga, Ph.D; Norman Eberhardt, Ph.D; and Andre Terzic, M.D., Ph.D.

Robert Nellis | newswise
Further information:
http://www.mayo.edu

Further reports about: Aging p16 p19

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>