Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A molecular switch turns on the flame in 'nature's blowtorch'

02.06.2008
New Brandeis research explains how enzyme works

Uncontrolled reaction of organic compounds with oxygen is easy: we call it fire. But nature often needs to do oxidations very specifically, adding oxygen to a particular carbon atom in a complicated molecule without disturbing anything else. Usually, this job falls to an enzyme called cytochrome P450.

Because cytochrome P450 can catalyze molecular oxidations with pinpoint accuracy, it has been called "nature's blowtorch," and its job is analogous to that of a welder doing a tricky repair in a highly flammable wooden house. It needs to do the repair without burning itself or the house.

Brandeis University researchers have been trying to understand the details of how P450 does this job so efficiently; that is, "burning" the right places in the target molecule (substrate) while not "burning down the house."

... more about:
»Molecular »Oxidation »P450 »Substrate

In new research online in the Cell Press journal Structure, chemistry graduate student Bo OuYang, along with fellow grad student Marina Dang and advisors Thomas and Susan Pochapsky, describe a new insight into how P450 works. The researchers discovered that the protein chain in P450 can change its structure by a 180 degree rotation around a single peptide bond. In one orientation, both oxygen and the molecule to be oxidized (substrate) can get in and out of the P450 active site, but the oxygen is not "activated," that is, it is not in a state to react with the substrate (or anything else, for that matter).

In the other orientation, however, the substrate is held tightly in the correct orientation for the oxidation, and the oxygen can be activated to do "the burn." The activated form of the molecule is generated by binding a helper protein, called Pdx, to the P450. This binding drives the reorientation around the peptide bond, and moves the P450 from the form in which substrate binds to the active form. After the reaction is finished, the Pdx falls off, the P450 moves back to the unactivated state, and the oxidized products are free to leave.

After another substrate molecule and oxygen move into the active site, the cycle can repeat. The reorientation of a single peptide bond, an event called an "isomerization," thus acts as a molecular switch, moving the P450 between safe and active forms while protecting the P450 and its environment from accidental oxidative damage.

Laura Gardner | EurekAlert!
Further information:
http://www.brandeis.edu

Further reports about: Molecular Oxidation P450 Substrate

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>