Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanoparticles assemble by millions to encase oil drops

02.06.2008
Designer 'nanobatons' could be used to trap oil, deliver drugs

In a development that could lead to new technologies for cleaning up oil spills and polluted groundwater, scientists at Rice University have shown how tiny, stick-shaped particles of metal and carbon can trap oil droplets in water by spontaneously assembling into bag-like sacs.

The tiny particles were found to assemble spontaneously by the tens of millions into spherical sacs as large as BB pellets around droplets of oil in water. In addition, the scientists found that ultraviolet light and magnetic fields could be used to flip the nanoparticles, causing the bags to instantly turn inside out and release their cargo -- a feature that could ultimately be handy for delivering drugs.

"The core of the nanotechnology revolution lies in designing inorganic nanoparticles that can self-assemble into larger structures like a 'smart dust' that performs different functions in the world – for example, cleaning up pollution," said lead research Pulickel Ajayan, Rice's Benjamin M. and Mary Greenwood Anderson Professor in Mechanical Engineering and Materials Science. "Our approach brings the concept of self-assembling, functional nanomaterials one step closer to reality."

... more about:
»Carbon »Sphere »assemble »droplets

The research was published online today by the American Chemical Society's journal Nano Letters.

The multisegmented nanowires, akin to "nanoscale batons," were made by connecting two nanomaterials with different properties, much like an eraser is attached to the end of a wooden pencil. In the study, the researchers started with carbon nanotubes -- hollow tubes of pure carbon. Atop the nanotubes, they added short segments of gold. Ajayan said that by adding various other segments -- like sections of nickel or other materials -- the researchers can create truly multifunctional nanostructures.

The tendency of these nanobatons to assemble in water-oil mixtures derives from basic chemistry. The gold end of the wire is water-loving, or hydrophilic, while the carbon end is water-averse, or hydrophobic. The thin, water-tight sacs that surround all living cells are formed by interlocking arrangements of hydrophilic and hydrophobic chemicals, and the sac-like structures created in the study are very similar.

Ajayan, graduate student Fung Suong Ou and postdoctoral researcher Shaijumon Manikoth demonstrated that oil droplets suspended in water became encapsulated because of the structures' tendency to align their carbon ends facing the oil. By reversing the conditions -- suspending water droplets in oil – the team was able to coax the gold ends to face inward and encase the water.

"For oil droplets suspended in water, the spheres give off a light yellow color because of the exposed gold ends," Ou said. "With water droplets, we observe a dark sphere due to the protruding black nanotubes."

The team is next preparing to test whether chemical modifications to the "nanobatons" could result in spheres that can both capture and break down oily chemicals. For example, they hope to attach catalysts to the water-hating ends of the nanowires that will cause compounds like trichloroethene, or TCE, to break into nontoxic constituents. Another option would be to attach drugs whose release can be controlled with an external stimulus.

"The idea is to go beyond just capturing the compound and initiate a process that will make it less toxic," Ajayan said. "We want to build upon the method of self assembly and start adding functionality so these particles can carry out tasks in the real world."

The research was supported by Rice University, Applied Materials Inc. and the New York State Foundation for Science, Technology and Innovation.

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

Further reports about: Carbon Sphere assemble droplets

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>