Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mammalian mechanism of time-place learning clarified

02.06.2008
We are all aware of the places you can better avoid in the dead of night. And we all know that the freshest, tastiest food can be bought at the open-air market early in the morning.

In the animal kingdom, too, it is of the utmost importance to circumvent certain places at certain times (due to predators) and to visit others at other times (due to the availability of food). Until recently, the exact way in which mammals established this link between time and place remained a mystery.

However, researchers at the University of Groningen have finally unravelled the secret. Their findings will be published in Current Biology on 3 June 2008.

The researchers began by observing how mice in the lab could be taught to connect time and place – the so-called ‘time-place learning’. Prof. Menno Gerkema, the last author of the article, explains that an attempt was made to emulate natural circumstances as much as possible. ‘Animals always have to weigh up the situation when gathering food. To them, food is never free. A mouse can always be seized by predators. We tried to incorporate that risk in our experiment.’

... more about:
»Gerkema »Passage »clock »time-place
Time-place learning
The researchers used a construction with three passages through which the mice could run. At the end of each passage, the mice could find food behind a platform. Depending on the time of day, however, an electric shock was applied through the platform. It soon became evident that the mice were perfectly capable of finding those places where food was freely available at certain times and of avoiding certain places where food could only be obtained at the cost of incurring an unpleasant shock. This finding was extraordinary in itself because, up to the present, no method of studying time-place learning in mammals had been constructed.
Biological clock
But what kind of mechanism do the mice use in this time-place learning? The researchers suspected that the mice made use of their biological clock, just as birds and bees do in time-place learning. To test this hypothesis, use was made of genetically modified mice that lack certain genes (called ‘Cry1’ and ‘Cry2’) so that they had to work without a biological clock. These mice turned out to be incapable of obtaining food in the passages at the appropriate moments. With this finding, the researchers have finally been able to ascertain that mammals make use of the biological clock in time-place learning.
Humans
People also learn to connect time and place. ‘A subconscious link between time and place is established in a great number of learning processes. If, for example, you cannot recall something, it helps to revisit the spot where the idea that you want to remember originated. The forming of associations between place and time helps us structure our memory.’ Gerkema surmises that time-place learning occurs in much the same way in humans as it does in mice, because both have roughly the same biological clock system.
Alzheimer’s disease
The researchers, Menno Gerkema and Eddy van der Zee, now wish to investigate how time-place learning changes as people grow older. Gerkema: ‘In humans, you see that the ability to connect time and place declines as one grows older. Some patients with Alzheimer’s disease completely lose their notion of time at a certain moment. This is a dramatic development, in view of the fact that they do not recognize the difference between day and night. That is why round-the-clock care is necessary and the patient usually has to be hospitalized.’ Insight into time-place learning may help in postponing this moment as long as possible.

Eelco Salverda | alfa
Further information:
http://www.rug.nl
http://images.cell.com/images/Edimages/CurrentBiology/May29/6467main.pdf

Further reports about: Gerkema Passage clock time-place

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>