Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mammalian mechanism of time-place learning clarified

02.06.2008
We are all aware of the places you can better avoid in the dead of night. And we all know that the freshest, tastiest food can be bought at the open-air market early in the morning.

In the animal kingdom, too, it is of the utmost importance to circumvent certain places at certain times (due to predators) and to visit others at other times (due to the availability of food). Until recently, the exact way in which mammals established this link between time and place remained a mystery.

However, researchers at the University of Groningen have finally unravelled the secret. Their findings will be published in Current Biology on 3 June 2008.

The researchers began by observing how mice in the lab could be taught to connect time and place – the so-called ‘time-place learning’. Prof. Menno Gerkema, the last author of the article, explains that an attempt was made to emulate natural circumstances as much as possible. ‘Animals always have to weigh up the situation when gathering food. To them, food is never free. A mouse can always be seized by predators. We tried to incorporate that risk in our experiment.’

... more about:
»Gerkema »Passage »clock »time-place
Time-place learning
The researchers used a construction with three passages through which the mice could run. At the end of each passage, the mice could find food behind a platform. Depending on the time of day, however, an electric shock was applied through the platform. It soon became evident that the mice were perfectly capable of finding those places where food was freely available at certain times and of avoiding certain places where food could only be obtained at the cost of incurring an unpleasant shock. This finding was extraordinary in itself because, up to the present, no method of studying time-place learning in mammals had been constructed.
Biological clock
But what kind of mechanism do the mice use in this time-place learning? The researchers suspected that the mice made use of their biological clock, just as birds and bees do in time-place learning. To test this hypothesis, use was made of genetically modified mice that lack certain genes (called ‘Cry1’ and ‘Cry2’) so that they had to work without a biological clock. These mice turned out to be incapable of obtaining food in the passages at the appropriate moments. With this finding, the researchers have finally been able to ascertain that mammals make use of the biological clock in time-place learning.
Humans
People also learn to connect time and place. ‘A subconscious link between time and place is established in a great number of learning processes. If, for example, you cannot recall something, it helps to revisit the spot where the idea that you want to remember originated. The forming of associations between place and time helps us structure our memory.’ Gerkema surmises that time-place learning occurs in much the same way in humans as it does in mice, because both have roughly the same biological clock system.
Alzheimer’s disease
The researchers, Menno Gerkema and Eddy van der Zee, now wish to investigate how time-place learning changes as people grow older. Gerkema: ‘In humans, you see that the ability to connect time and place declines as one grows older. Some patients with Alzheimer’s disease completely lose their notion of time at a certain moment. This is a dramatic development, in view of the fact that they do not recognize the difference between day and night. That is why round-the-clock care is necessary and the patient usually has to be hospitalized.’ Insight into time-place learning may help in postponing this moment as long as possible.

Eelco Salverda | alfa
Further information:
http://www.rug.nl
http://images.cell.com/images/Edimages/CurrentBiology/May29/6467main.pdf

Further reports about: Gerkema Passage clock time-place

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>