Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

X chromosome exposed

02.06.2008
An enzyme that binds differently to male and female sex chromosomes helps males to make up for their X chromosome shortage

Researchers from the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany, and the EMBL-European Bioinformatics Institute (EMBL-EBI) in Hinxton, UK, have revealed new insights into how sex chromosomes are regulated. A chromatin modifying enzyme helps compensate for the fact that males have only one copy of the sex chromosome X, while females have two.

The enzyme distinguishes between male and female sex chromosomes in fruit flies and binds to different locations on the male and female X chromosome, the scientists report in the current issue of the journal Cell. The evolutionarily conserved enzyme is also found in humans.

In species ranging from insects to humans, sex chromosomes, the famous X and Y, are responsible for determining gender. Females have two copies of the X chromosome while males have one X and one Y. This could mean that females produce twice as many proteins from the genes carried on the X chromosome as males. However, fruit flies compensate for the sex chromosome difference by doubling the activity of genes on the X chromosome in males – a vital process called dosage compensation. Biologists already know that a molecular machine called the MSL complex achieves dosage compensation in flies, but it remains unclear how exactly it accomplishes its function.

... more about:
»Chromosome »DNA »MOF »Sex »binds »compensation »dosage »enzyme »transcription

Now researchers from the lab of Asifa Akhtar at EMBL and the groups of Nick Luscombe and Paul Bertone at EMBL-EBI have uncovered how one component of the MSL complex, an enzyme called MOF, ensures that the activity of only male X chromosome genes get ratcheted up. MOF relaxes the structure of chromatin – tightly packaged DNA, to allow the transcription machinery to access genes on the DNA.

“We were very surprised to find MOF bound not only to the X chromosome in males, but also to all the other chromosomes in the nucleus. This suggests the enzyme as a universal regulator of transcription that has evolved to play a specific role in dosage compensation,” says Akhtar.

A closer look revealed that MOF binds differently to chromosomes from males and females. On autosomes, chromosomes that are not involved in determining sex, and the X chromosome in females, MOF binds mostly to the beginning of a gene where transcription starts. On the X chromosome in males, however, MOF binds also towards the end of the gene. Most likely MOF opens up the DNA towards the end of the genes and ensures that transcription is completed successfully.

“One can imagine the transcriptional machinery moving along the DNA like a train on a railway track. When the tracks are blocked the train could derail, resulting in incomplete transcription,” explains Juanma Vaquerizas of Luscombe’s lab, who contributed to the analysis of Akhtar’s data. “It appears that MOF clears the tracks throughout the male X chromosome, while on a female X obstructions are more likely to occur.”

More complete transcription results in more proteins produced from the single X chromosome in males than from either of the two X chromosomes in females, thereby balancing out their excess. MOF is the first enzyme in the MSL complex to behave differently according to whether the target gene is located on the sex chromosome versus other chromosomes in males.

“MOF is conserved across species and also has a human homolog. Since the mechanism of dosage compensation is radically different in mammals, it will be very interesting to discover what functional role this enzyme might play in that context,” says Bertone.

Published in Cell on 30 May 2008.

Anna-Lynn Wegener | EMBL
Further information:
http://www.embl.de
http://www.embl.org/aboutus/news/press/2008/30may08/index.html

Further reports about: Chromosome DNA MOF Sex binds compensation dosage enzyme transcription

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>