Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

X chromosome exposed

02.06.2008
An enzyme that binds differently to male and female sex chromosomes helps males to make up for their X chromosome shortage

Researchers from the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany, and the EMBL-European Bioinformatics Institute (EMBL-EBI) in Hinxton, UK, have revealed new insights into how sex chromosomes are regulated. A chromatin modifying enzyme helps compensate for the fact that males have only one copy of the sex chromosome X, while females have two.

The enzyme distinguishes between male and female sex chromosomes in fruit flies and binds to different locations on the male and female X chromosome, the scientists report in the current issue of the journal Cell. The evolutionarily conserved enzyme is also found in humans.

In species ranging from insects to humans, sex chromosomes, the famous X and Y, are responsible for determining gender. Females have two copies of the X chromosome while males have one X and one Y. This could mean that females produce twice as many proteins from the genes carried on the X chromosome as males. However, fruit flies compensate for the sex chromosome difference by doubling the activity of genes on the X chromosome in males – a vital process called dosage compensation. Biologists already know that a molecular machine called the MSL complex achieves dosage compensation in flies, but it remains unclear how exactly it accomplishes its function.

... more about:
»Chromosome »DNA »MOF »Sex »binds »compensation »dosage »enzyme »transcription

Now researchers from the lab of Asifa Akhtar at EMBL and the groups of Nick Luscombe and Paul Bertone at EMBL-EBI have uncovered how one component of the MSL complex, an enzyme called MOF, ensures that the activity of only male X chromosome genes get ratcheted up. MOF relaxes the structure of chromatin – tightly packaged DNA, to allow the transcription machinery to access genes on the DNA.

“We were very surprised to find MOF bound not only to the X chromosome in males, but also to all the other chromosomes in the nucleus. This suggests the enzyme as a universal regulator of transcription that has evolved to play a specific role in dosage compensation,” says Akhtar.

A closer look revealed that MOF binds differently to chromosomes from males and females. On autosomes, chromosomes that are not involved in determining sex, and the X chromosome in females, MOF binds mostly to the beginning of a gene where transcription starts. On the X chromosome in males, however, MOF binds also towards the end of the gene. Most likely MOF opens up the DNA towards the end of the genes and ensures that transcription is completed successfully.

“One can imagine the transcriptional machinery moving along the DNA like a train on a railway track. When the tracks are blocked the train could derail, resulting in incomplete transcription,” explains Juanma Vaquerizas of Luscombe’s lab, who contributed to the analysis of Akhtar’s data. “It appears that MOF clears the tracks throughout the male X chromosome, while on a female X obstructions are more likely to occur.”

More complete transcription results in more proteins produced from the single X chromosome in males than from either of the two X chromosomes in females, thereby balancing out their excess. MOF is the first enzyme in the MSL complex to behave differently according to whether the target gene is located on the sex chromosome versus other chromosomes in males.

“MOF is conserved across species and also has a human homolog. Since the mechanism of dosage compensation is radically different in mammals, it will be very interesting to discover what functional role this enzyme might play in that context,” says Bertone.

Published in Cell on 30 May 2008.

Anna-Lynn Wegener | EMBL
Further information:
http://www.embl.de
http://www.embl.org/aboutus/news/press/2008/30may08/index.html

Further reports about: Chromosome DNA MOF Sex binds compensation dosage enzyme transcription

More articles from Life Sciences:

nachricht The body's street sweepers
18.12.2017 | Ludwig-Maximilians-Universität München

nachricht Life on the edge prepares plants for climate change
18.12.2017 | Max-Planck-Institut für Entwicklungsbiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Error-free into the Quantum Computer Age

A study carried out by an international team of researchers and published in the journal Physical Review X shows that ion-trap technologies available today are suitable for building large-scale quantum computers. The scientists introduce trapped-ion quantum error correction protocols that detect and correct processing errors.

In order to reach their full potential, today’s quantum computer prototypes have to meet specific criteria: First, they have to be made bigger, which means...

Im Focus: Search for planets with Carmenes successful

German and Spanish researchers plan, build and use modern spectrograph

Since 2016, German and Spanish researchers, among them scientists from the University of Göttingen, have been hunting for exoplanets with the “Carmenes”...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Life on the edge prepares plants for climate change

18.12.2017 | Life Sciences

Lipid nanodiscs stabilize misfolding protein intermediates red-handed

18.12.2017 | Life Sciences

Single-photon detector can count to 4

18.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>