Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Altruism in social insects IS a family affair

The contentious debate about why insects evolved to put the interests of the colony over the individual has been reignited by new research from the University of Leeds, showing that they do so to increase the chances that their genes will be passed on.

A team led by Dr Bill Hughes of the University’s Faculty of Biological Sciences studied 'kin selection' – the theory that an animal may pass on its genes by helping relatives to reproduce, because they share common genes, rather than by reproducing itself.

The concept of ‘kin selection’ was developed in 1964 by the evolutionary biologist Bill Hamilton, first proposed by Charles Darwin to explain, for example, why sterile workers evolved in social insect groups and why a honeybee would sacrifice its life to defend the colony. Charles Darwin recognized that such altruistic behaviour in highly social insect groups was at odds with his theory of natural selection, and Bill Hamilton’s theory of kin selection showed that this behaviour can evolve because it still fulfills the drive to pass on genes - but through relatives instead.

As such, high relatedness between insects has generally been seen as essential for the evolution of highly social behaviour and until recently, kin selection was widely accepted by the scientific community.

... more about:
»Hughes »Theory »Wilson »genes »relatedness »selection

But this paradigm was challenged in 2005 by the eminent academic E.O. Wilson, the founder of sociobiology, who pointed out that relatedness is rather low in some of today's social insects. He suggested that highly social behaviour evolves solely because individuals do better when they cooperate than when they live a solitary life - a controversial theory which not only conflicted with 45 years of scientific research, but which also sparked a highly charged debate between Wilson and Richard Dawkins, author of The Selfish Gene.

Dr Hughes and colleagues at the Universities of Sydney and Sussex tested the two alternative theories by examining the level of relatedness between females in colonies of bees, wasps and ants, determined by DNA fingerprinting techniques, and using statistical methods to look at levels of monogamy in the ancestral social insects when they evolved up to 100 million years ago.

If females were monogamous, mating with one male, this would mean the members of the colony are highly related, and so Hamilton’s theory would be correct. If they were polygamous, with the female mating with many males, relatedness would be lower and so Wilson may be right after all.

The research, published in the current issue of the prestigious academic journal, Science, found that in every group studied(1) ancestral females were found to be monogamous, providing the first evidence that kin selection is fundamental to the evolution of social insects.

Dr Hughes said: "We have produced the first conclusive evidence that kin selection explains the evolution of social insects and that Wilson's hypothesis is most probably wrong. By challenging something that we have based all our understanding on for 45 years, Wilson has forced us all to examine the theory again and assess the logic of the arguments. In a recent media interview, he issued a challenge to the scientific community to prove his theory wrong and whilst many felt it was, there hasn’t been any hard evidence until now.”

The research was carried out by Dr Hughes, Professor Ben Oldroyd of the University of Sydney, Associate Professor Madeleine Beekman of the University of Sydney and Professor Francis Ratnieks of the University of Sussex.

Jo Kelly | alfa
Further information:

Further reports about: Hughes Theory Wilson genes relatedness selection

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>