Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Acute artificial compound eyes

30.05.2008
Insects are a source of inspiration for technological development work. For example, researchers around the world are working on ultra-thin imaging systems based on the insect eye. The principle of hyperacuity has now been successfully incorporated in a technical model.

Insects have inspired scientists to transfer features which have been optimized over millions of years to present-day products. Research scientists at the Fraunhofer Institute for Applied Optics and Precision Engineering IOF in Jena, for example, are working on the development of an ultra-thin image sensor based on the insect eye.

In the work for his degree dissertation “High-precision position determination with artificial compound eyes”, Andreas Brückner improved the imaging properties of these systems with regard to sensor applications.

Insects have not just two, but thousands of eyes. Each facet of their eye picks up one image point, and the numerous facets, each with its own lens and visual cells, are spread over the surface of a hemisphere. As a result, the insect eye can cover a wide viewing angle – but the resolution of the images produced is not particularly high. This is surprising, given that insects can fly very precise maneuvers.

... more about:
»Sensor »artificial »compound »facet

They are able to do so because of the principle of hyperacuity – insects see more than the images actually captured by their compound eyes because the visual fields of adjacent facets overlap, and Andreas Brückner is replicating this phenomenon in a technical system. “The aim was to develop micro-optical compound eyes which contain numerous parallel imaging channels and which are also extremely compact, thinner than 0.5 millimeters,” reports Andreas Brückner. To achieve this, he began by analyzing how images are created in artificial compound eyes. Given that each facet captures one image point, the challenge was to accomplish controlled overlapping in the technical system. With a precise knowledge of the angular sensitivity, image signals of adjacent facets can then be compared with each other.

This makes it possible to determine the position of the object viewed in a two-dimensional visual field with an accuracy which is many times higher than the image resolution. A comparison has shown that an artificial compound eye lens can transfer information with an effective image resolution of 625 x 625 pixels although the number of actually available image pixels is limited to 50 x 50. As a result, the sensor can recognize simple objects, precisely determine their position and size, and also reliably detect movements. Brückner is to be presented with the Hugo Geiger Prize (1st place) for the results of his dissertation.

Several projects are already underway to implement the process, for instance as solar altitude sensors in automobiles, for recognizing traffic lanes in driver assistance systems, and in machine vision.

Press Office | alfa
Further information:
http://www.fraunhofer.de/EN/press/pi/2008/05/ResearchNews5s2008Topic5.jsp

Further reports about: Sensor artificial compound facet

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>