Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Printed biochips

30.05.2008
Peptide arrays are powerful tools for developing new medical substances as well as for diagnosis and therapy techniques. A new production method based on laser printing will enable the potential of peptide arrays to be effectively utilized for the first time.

Peptides are protein fragments consisting of up to 50 amino acids. However, peptides with a length of 15 to 20 amino acids arranged in arrays are sufficient for drug research and for identifying pathogenic proteins. Unfortunately, the capacity of such arrays is limited.

A maximum of 10,000 peptides will fit onto a glass slide at present, but biochips with 100,000 peptides are needed in order to represent each of the approximately thousand proteins in a bacterium – in the form of 100 overlapping peptides – and a staggering 500,000 are required for a malaria pathogen. Another drawback is the price: An individual peptide spot costs around 5 euros, adding up to almost 50,000 euros for a full array.

In cooperation with developers from the Fraunhofer Institute for Manufacturing Engineering and Automation IPA in Stuttgart, scientists at the German Cancer Research Center (DKFZ) in Heidelberg have found a cheap way of mass-producing peptide arrays: printed biochips. “At present, peptide arrays are manufactured by a spotting technique that uses a robot to dab the individual amino acids onto a paper-like membrane,” explains Dr. Stefan Güttler of the IPA. “Trying to do this with a laser printer is something completely new.”

... more about:
»Array »BioChips »Peptide »Protein »acid »amino »amino acids

The project requirements were stringent, calling for printing on glass, rather than a flexible medium, and involving the use of 20 different toners – because peptides consist of 20 different amino acids which must be linked to form specific chains. The DKFZ scientists provided the bio-toner: encapsulated amino acids. During printing, the amino acid particles are first processed in a dry state. For a chemical reaction, however, they need to be dissolved. “We dissolve the amino acids by heating the carrier,” explains Dr. F. Ralf Bischoff of the DKFZ.

The toner particles melt, enabling the amino acids to couple with the carrier. The amino acid particles are printed layer by layer on the glass slide, exactly on top of one other, and subsequently linked. Compared to the state of art, printed peptide arrays are much more complex. They contain over 155,000 micro spots on a carrier measuring 20 by 20 cm, and can be manufactured much faster at a price that is at least 100 times lower than that of conventionally produced peptide arrays. The arrays can now be offered for a few cents per peptide.

The research teams were awarded the Stifterverband Science Prize 2008 for developing this manufacturing process for highly complex biochips. The work was funded internally and by the Federal Ministry of Education and Research (BMBF) and the VW Foundation.

Press Office | alfa
Further information:
http://www.fraunhofer.de/EN/bigimg/2008/rn05sfo1g.jsp
http://www.fraunhofer.de/EN/press/pi/2008/05/ResearchNews5s2008Topic1.jsp

Further reports about: Array BioChips Peptide Protein acid amino amino acids

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>