Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New insights into cellular reprogramming revealed by genomic analysis

30.05.2008
Research collaboration of Harvard, Whitehead Institute, and Broad Institute uncovers critical molecular events underlying reprogramming of differentiated cells to a stem cell state

The ability to drive somatic, or fully differentiated, human cells back to a pluripotent or “stem cell” state would overcome many of the significant scientific and social challenges to the use of embryo-derived stem cells and help realize the promise of regenerative medicine.

Recent research with mouse and human cells has demonstrated that such a transformation (“reprogramming”) is possible, although the current process is inefficient and, when it does work, poorly understood. But now, thanks to the application of powerful new integrative genomic tools, a cross-disciplinary research team from Harvard University, Whitehead Institute, and the Broad Institute of MIT and Harvard has uncovered significant new information about the molecular changes that underlie the direct reprogramming process. Their findings are published online in the journal Nature.

“We used a genomic approach to identify key obstacles to the reprogramming process and to understand why most cells fail to reprogram,” said Alexander Meissner, assistant professor at Harvard University’s Department of Stem Cell and Regenerative Biology and associate member of the Broad Institute, who led the multi-institutional effort. “Currently, reprogramming requires infecting somatic cells with engineered viruses. This approach may be unsuitable for generating stem cells that can be used in regenerative medicine. Our work provides critical insights that might ultimately lead to a more refined approach.”

... more about:
»Reprogramming »Stem »genomic »partially »reprogrammed

Previous work had demonstrated that four transcription factors — proteins that mediate whether their target genes are turned on or off — could drive fully differentiated cells, such as skin or blood cells, into a stem cell-like state, known as induced pluripotent stem (iPS) cells. Building off of this knowledge, the researchers examined both successfully and unsuccessfully reprogrammed cells to better understand the complex process.

“Interestingly, the response of most cells appears to be activation of normal ‘fail safe’ mechanisms”, said Tarjei Mikkelsen, a graduate student at the Broad Institute and first author of the Nature paper. ”Improving the low efficiency of the reprogramming process will require circumventing these mechanisms without disabling them permanently.”

The researchers used next-generation sequencing technologies to generate genome-wide maps of epigenetic modifications — which control how DNA is packaged and accessed within cells — and integrated this approach with gene expression profiling to monitor how cells change during the reprogramming process. Their key findings include:

Fully reprogrammed cells, or iPS cells, demonstrate gene expression and epigenetic modifications that are strikingly similar, although not necessarily identical, to embryonic stem cells.

Cells that escape their initial fail-safe mechanisms can still become ‘stuck’ in partially reprogrammed states.

By identifying characteristic differences in the epigenetic maps and expression profiles of these partially reprogrammed cells, the researchers designed treatments using chemicals or RNA interference (RNAi) that were sufficient to drive them to a fully reprogrammed state.

One of these treatments, involving the chemotherapeutic 5-azacytidine, could improve the overall efficiency of the reprogramming process by several hundred percent.

“A key advance facilitating this work was the isolation of partially reprogrammed cells,” said co-author Jacob Hanna, a postdoctoral fellow at the Whitehead Institute, who recently led two other independent reprogramming studies. “We expect that further characterization of partially programmed cells, along with the discovery and use of other small molecules, will make cellular reprogramming even more efficient and eventually safe for use in regenerative medicine.”

Nicole Davis | EurekAlert!
Further information:
http://www.broad.mit.edu
http://www.harvard.edu
http://www.wi.mit.edu

Further reports about: Reprogramming Stem genomic partially reprogrammed

More articles from Life Sciences:

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

nachricht Research reveals how order first appears in liquid crystals
23.05.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>