Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Barren' seafloor teeming with microbial life

30.05.2008
Life at rock bottom great for bacteria

Once considered a barren plain with the odd hydrothermal vent, the seafloor appears to be teeming with microbial life, according to a paper being published May 29 in Nature.

“A 60,000 kilometer seam of basalt is exposed along the mid-ocean ridge spreading system, representing potentially the largest surface area for microbes to colonize on Earth,” said USC geomicrobiologist Katrina Edwards, the study’s corresponding author.

While seafloor microbes have been detected before, this is the first time they have been quantified. Using genetic analysis, Edwards and colleagues found thousands of times more bacteria on the seafloor than in the water above.

... more about:
»Edwards »USC »diversity »geobiology »microbes »microbial

Surprised by the abundance, the scientists tested another Pacific site and arrived at consistent results. This makes it likely that rich microbial life extends across the ocean floor, Edwards said.

The scientists also found higher microbial diversity on the rocks compared with other vibrant systems, such as those found at hydrothermal vents.

Even compared with the microbial diversity of farm soil—viewed by many as the richest—diversity on the basalt is statistically equivalent.

“These scientists used modern molecular methods to quantify the diversity of microbes in remote deep-sea environments,” said David L. Garrison, director of the National Science Foundation’s biological oceanography program.

“As a result, we now know that there are many more such microbes than anyone had guessed,” he added.

These findings raise the question of where these bacteria find their energy.

“We scratched our heads about what was supporting this high level of growth when the organic carbon content is pretty darn low,” Edwards recalled.

With evidence that the oceanic crust supports more bacteria compared with overlying water, the scientists hypothesized that reactions with the rocks themselves might offer fuel for life.

Back in the lab, they calculated how much biomass could theoretically be supported by chemical reactions with the basalt. They then compared this figure to the actual biomass measured. “It was completely consistent,” Edwards said.

This lends support to the idea that bacteria survive on energy from the crust, a process that could affect our knowledge about the deep-sea carbon cycle and even evolution.

For example, many scientists believe that shallow water, not deep water, cradled the planet’s first life. They reason that the dark carbon-poor depths appear to offer little energy, and rich environments like hydrothermal vents are relatively sparse.

But the newfound abundance of seafloor microbes makes it theoretically possible that early life thrived—and maybe even began—on the seafloor.

“Some might even favor the deep ocean for the emergence of life since it was a bastion of stability compared with the surface, which was constantly being blasted by comets and other objects,” Edwards suggested.

Still, current knowledge of the deep biosphere can fit on the head of a pin, Edwards said. Most seafloor bacteria uncovered in this study show little relation to those cultivated in labs, which makes experimentation difficult.

Rather than bringing bacteria to the lab, however, Edwards plans to bring the lab to bacteria—with a microbial observatory 15,000 feet below sea level.

Thanks to a $3.9-million grant awarded in March by the Gordon and Betty Moore Foundation, Edwards and over 30 colleagues will continue studying seafloor bacteria, but will also study their subseafloor cousins that cycle through the porous rock.

The first expedition of its kind, the drilling operation will penetrate 100 meters of sediments and 500 meters of bedrock.

Besides experiments aimed at learning how precisely these bacteria alter rock, the scientists will measure the diversity, abundance and relatedness of microbes at different depths.

This will shed light on whether the bacteria evolved from ancestors that floated down from above or from some as yet unknown source deep in the crust.

The Nature study provides a crucial base of comparison between the seafloor and subseafloor microbes, both completely unknown until just recently.

The decade-long undertaking will further bridge the earth and life sciences, a key goal in the emerging field of geobiology, described by Edwards as the co-evolution of Earth and life.

The deep biosphere is uniquely suited for a geobiological approach, Edwards said, since a proper understanding requires genomics, analysis of microbe-rock chemical interactions and a timescale in the millions of years.

Edwards joined USC two years ago as part of its cluster hire of scientists with multidisciplinary interests related to geobiology. With its concentration of faculty in the field, Southern California and USC in particular are regarded as hubs for the geobiology research community.

USC recently hosted the 5th Annual Geobiology Symposium, co-organized by USC post-doctoral student Beth Orcutt, the second author of the Nature paper.

In addition, the USC Wrigley Institute for Environmental Studies runs a summer geobiology course on Catalina Island that brings together top students and faculty.

Edwards believes that most people just don’t realize how much life thrives in the watery depths.

“If we can really nail down what’s going on, then there are significant implications,” she said. “It is my hope that people turn their heads and notice that there’s life down there.”

Terah DeJong | EurekAlert!
Further information:
http://www.usc.edu

Further reports about: Edwards USC diversity geobiology microbes microbial

More articles from Life Sciences:

nachricht 'Y' a protein unicorn might matter in glaucoma
23.10.2017 | Georgia Institute of Technology

nachricht Microfluidics probe 'cholesterol' of the oil industry
23.10.2017 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>