Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain cells help neighboring nerves regenerate

29.05.2008
Article appearing in the May 30 Journal of Biological Chemistry

Researchers have uncovered a completely unexpected way that the brain repairs nerve damage, wherein cells known as astrocytes deliver a protective protein to nearby neurons.

Astrocytes are a type of support cell in the brain that serve many functions; one of their roles is to chew up damaged nerves during brain injury and then form scar tissue in the damaged area.

Roger Chung and colleagues have now found that astrocytes have another trick up their sleeve. During injury, astrocytes overproduce a protein called metallothionein (MT) and secrete it to surrounding nerves; MT is a scavenging protein that grabs free radicals and metal ions and prevents them from damaging a cell, and thus is a potent protecting agent.

... more about:
»Nerve »Protein »astrocytes »repair

While the ability of astrocytes to produce MT has been known for decades, the general view was that the MT stayed within astrocytes to protect them while they help repair damaged areas. However, Chung and colleagues demonstrated that MT was present in the external fluid of damaged rat brain. Furthermore, with the aid of a fluorescent MT protein, they observed that MT made in astrocytes could be transported outside the cell and then subsequently taken up by nearby nerves, and that the level of MT uptake correlated with how well the nerves repaired damage.

While the exact physiological role that MT plays in promoting better repair remains to be identified, this unexpected role for this protein should open up new avenues in treating brain injuries in the future.

Nick Zagorski | EurekAlert!
Further information:
http://www.asbmb.org
http://www.jbc.org/cgi/content/full/283/22/15349

Further reports about: Nerve Protein astrocytes repair

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>