Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Regulatory B cells exist -- and pack a punch

Researchers at Duke University Medical Center have uncovered definitive evidence that a small but potent subset of immune system B cells is able to regulate inflammation.

Using a new set of scientific tools to identify and count these cells, the team showed that these B cells can block contact hypersensitivity, the type of skin reactions that many people have when they brush against poison ivy.

The findings may have large implications for scientists and physicians who develop vaccines and study immune-linked diseases, including cancer. Once the cells that regulate inflammatory responses are identified, scientists may have a better way to develop treatments for many diseases, particularly autoimmune diseases such as arthritis, type 1 diabetes and multiple sclerosis.

“While the study of regulatory T cells is a hot area with obvious clinical applications, everyone has been pretty skeptical about whether regulatory B cells exist,” said Thomas F. Tedder, Ph.D., chairman of the Immunology Department and lead author of the study published in the May issue of Immunity. “I am converted. They do exist.”

... more about:
»B cells »B10 »IL-10 »T cells »Tedder »immune »inflammation »regulatory »subset

Koichi Yanaba and Jean-David Bouaziz identified this unique subset of small white blood cells, which they call B10 cells, in the Tedder laboratory.

The researchers found that B10 cells produce a potent cytokine, called IL-10 (interleukin-10), a protein that can inhibit immune responses. The B10 cells also can affect the function of T cells, which are immune system cells that generally boost immune responses by producing cytokines. T cells also attack tumors and virus-infected cells.

The study was supported by grants from the NIH, the Association pour la Recherche contre le Cancer (ARC), Foundation Rene Touraine, and the Philippe Foundation.

Depleting B10 cells may enhance some immune responses, Tedder said. Enhancing B10 cell function may inhibit inflammation and immune responses in other diseases, like contact hypersensitivity.

“Now that we have been able to identify this regulatory B cell subset, we have already developed treatments that deplete these cells in mice. We are moving to translate these findings to benefit people,” he said.

“The discovery of the ability to identify this potent regulatory cell type should provide important clues to how the immune system regulates itself in response to vaccines as well as infectious agents,” says Barton F. Haynes, M.D., leader of the international Center for HIV/AIDS Vaccine Immunology (CHAVI), a consortium of universities and academic medical centers, and director of the Duke Human Vaccine Institute. “This information should enable researchers to design ways to help the immune system control infections more effectively, and could be a useful advance as we refine approaches to preventing HIV infection.”

There’s a huge initiative underway to look at regulatory T cells in autoimmune disease, HIV infection, and cancer therapy,” Tedder said. “What we have also shown is that it is not only regulatory T cells, but also regulatory B cells that could prevent a person from making effective immune responses in HIV and many other diseases, particularly cancer.”

The Duke researchers developed a way to mark the B10 cells so that they could see that just these cells were producing IL-10. Previously, scientists could only purify a population of B cells and see whether IL-10 could be produced by some of these cells in the population.

In this study, they found that the B10 cells represented only 1-2 percent of all of the B cells in the spleen of a normal mouse. Before this, no one had definitively identified this B cell subset or such regulatory B cells in normal mice, although B cell regulatory function had been described in some genetically altered mice with chronic inflammation.

“In this study, we could directly look at the B cells that were producing IL-10, and figure out what their cell surface molecules looked like, so that we could isolate them. This allowed us to show that this rare subset of B cells controlled immune responses by producing IL-10, which inhibits T cell inflammatory responses,” Tedder said.

The scientists studied a special mouse (CD19-deficient) with altered genes that give them an increased contact hypersensitivity reaction. As it turned out, these mice lacked B10 cells, which resulted in exaggerated inflammation reaction. “This allowed us to show that giving CD19-deficient mice a few B10 cells had a big effect on reducing inflammation,” Tedder said.

They found that depleting all B cells in the mice also resulted in worse inflammation. Since total B cell depletion therapies are now being used to treat people with B cell cancers and autoimmune disease, these findings help to further explain how these therapies treat disease. They also open the door to creating new therapies that take advantage of the power of B10 cells.

This is the first of several papers that will describe cases in which regulatory B10 cells help control immune responses, Tedder said.

Mary Jane Gore | EurekAlert!
Further information:

Further reports about: B cells B10 IL-10 T cells Tedder immune inflammation regulatory subset

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>