Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research reveals molecular fingerprint of cocaine addiction

29.05.2008
The first large-scale analysis of proteins in the brains of monkeys addicted to cocaine reveals new information on how long-term cocaine use changes the amount and activity of various proteins affecting brain function.

The identified changes are more numerous and long-lasting than previously thought, which may provide a biological explanation for why cocaine addiction is so difficult to overcome, according to Scott E. Hemby, Ph.D. of Wake Forest University School of Medicine, senior author of the study.

Results from the study are reported online today (May 27) in the journal Molecular Psychiatry and detail the effect of long-term cocaine intake on the amount and activity of thousands of proteins in monkeys. Monkeys are an ideal animal for studying addiction because they share considerable behavioral, anatomical and biochemical similarities with humans. About 2.4 million Americans currently use cocaine, according to estimates.

The researchers used state-of-the-art “proteomic” technology, which enables the simultaneous analysis of thousands of proteins, to compare the “proteome” (all proteins expressed at a given time) between a group of monkeys that self-administered cocaine and a group that did not receive the drug. Leonard Howell, Ph.D., with Emory University School of Medicine, who conducted the monkey studies, was a co-researcher. The study provides a comprehensive assessment of biochemical changes occurring in the cocaine addicted brain, Hemby said.

... more about:
»Cell »addiction »changes »cocaine »long-term »proteins

“The changes we identified are profound and affect the structure, metabolism and signaling of neurons,” said lead author Nilesh Tannu, M.D. “It is unlikely that these types of changes are easily reversible after drug use is discontinued, which may explain why relapse occurs.”

Hemby said that the development of medications to treat addictive disorders is guided in large part by our understanding of the brain mechanisms that produce the euphoric effects of the drugs. It is equally important to understand the damage that long-term drug use causes to brain cells so medications can be developed to reverse those effects and restore normal cell function in the brain.

The changes identified in the current study point to significant and likely long-lasting damage to brain cells as a result of cocaine abuse. “The duration of use and the amount of drug consumed that lead to such damage is currently not known, but is critical for understanding the long-term health consequences of cocaine abuse and determining the necessary modes of treatment,” said Hemby. “We hope that the information generated from the study will also serve an educational purpose as a deterrent to cocaine use.”

Karen Richardson | EurekAlert!
Further information:
http://www.wfubmc.edu

Further reports about: Cell addiction changes cocaine long-term proteins

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>