Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

40-year search is over: UT Southwestern researchers identify key photoreceptor in fungi

05.07.2002


After 40 years of searching for the photoreceptor that controls multiple vital processes in fungi, researchers at UT Southwestern Medical Center at Dallas have discovered the protein that triggers this phenomenon.



Light regulates several physiological processes in fungi, including their ability to produce spores and the synchronization of their internal biological clocks, but their photoreceptors – receptors that are sensitive to light and are essential for most ongoing processes – were not known until this breakthrough discovery made by UT Southwestern researchers.

In this week’s on-line version of Science, the researchers report that the protein White Collar –1, or WC-1, is the photoreceptor for light responses in fungi, which encompass yeast and mold. Fungi share with bacteria the important ability to break down complex organic substances of almost every type and are essential to the recycling of carbon and other elements in the cycle of life. Fungi are also important as foods and to the fermentation process in the development of substances for industrial and medical importance, including alcohol, antibiotics, other drugs and antitoxins.


UT Southwestern researchers also specifically identified WC-1’s role in the internal biological clock of fungi, which is called the circadian clock and is controlled by light. This internal time-keeping system is a fundamental property in almost all organisms, allowing them to adapt to the natural environment.

"This discovery is important because it provides a better understanding of how life works and how life adjusts to the environment," said Dr. Yi Liu, senior author of the study and an assistant professor of physiology at UT Southwestern.

WC-1 previously had been identified as a protein involved in the transfer of genetic code information, a process called transcription, but researchers had not discovered its role as a photoreceptor until now.

"We hypothesized if the photo sensory domain of WC-1 was removed, all light- regulated processes, including the circadian clock, would be blind," said Liu.

The researchers tested this hypothesis by creating an organism that lacked WC-1 putative photo sensory domain. Liu and his collaborators demonstrated that WC-1, like all known photoreceptors, is associated with a photo pigment, the molecule that is sensitive to light.

"As we predicted, this mutant organism was literally blind to light. The circadian clock was no longer synchronized by light and the light-regulated genes were not turned on after light treatment, which affected many physiological processes," Liu said.

"All light responses were interrupted in this mutant, including the growth of mold and the production of spores," said Liu, who also was co-author of a second study published on this week’s Science Web site about the role of WC-1 in mediating light input to the circadian clock.


Other researchers involved in the UT Southwestern study included Drs. Ping Cheng and Qiyang He, both first authors of the study and postdoctoral researchers in physiology; Dr. Kevin Gardner, assistant professor of biochemistry; Lixing Wang, a research technician in physiology; and Dr. Yuhong Yang, a postdoctoral researcher in physiology.

The study was supported by grants from the National Institutes of Health.

To automatically receive news releases from UT Southwestern via e-mail, send a message to UTSWNEWS-REQUEST@listserv.swmed.edu. Leave the subject line blank and in the text box, type SUB UTSWNEWS.


Amy Shields | EurekAlert!
Further information:
http://www.swmed.edu/

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>