Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

40-year search is over: UT Southwestern researchers identify key photoreceptor in fungi

05.07.2002


After 40 years of searching for the photoreceptor that controls multiple vital processes in fungi, researchers at UT Southwestern Medical Center at Dallas have discovered the protein that triggers this phenomenon.



Light regulates several physiological processes in fungi, including their ability to produce spores and the synchronization of their internal biological clocks, but their photoreceptors – receptors that are sensitive to light and are essential for most ongoing processes – were not known until this breakthrough discovery made by UT Southwestern researchers.

In this week’s on-line version of Science, the researchers report that the protein White Collar –1, or WC-1, is the photoreceptor for light responses in fungi, which encompass yeast and mold. Fungi share with bacteria the important ability to break down complex organic substances of almost every type and are essential to the recycling of carbon and other elements in the cycle of life. Fungi are also important as foods and to the fermentation process in the development of substances for industrial and medical importance, including alcohol, antibiotics, other drugs and antitoxins.


UT Southwestern researchers also specifically identified WC-1’s role in the internal biological clock of fungi, which is called the circadian clock and is controlled by light. This internal time-keeping system is a fundamental property in almost all organisms, allowing them to adapt to the natural environment.

"This discovery is important because it provides a better understanding of how life works and how life adjusts to the environment," said Dr. Yi Liu, senior author of the study and an assistant professor of physiology at UT Southwestern.

WC-1 previously had been identified as a protein involved in the transfer of genetic code information, a process called transcription, but researchers had not discovered its role as a photoreceptor until now.

"We hypothesized if the photo sensory domain of WC-1 was removed, all light- regulated processes, including the circadian clock, would be blind," said Liu.

The researchers tested this hypothesis by creating an organism that lacked WC-1 putative photo sensory domain. Liu and his collaborators demonstrated that WC-1, like all known photoreceptors, is associated with a photo pigment, the molecule that is sensitive to light.

"As we predicted, this mutant organism was literally blind to light. The circadian clock was no longer synchronized by light and the light-regulated genes were not turned on after light treatment, which affected many physiological processes," Liu said.

"All light responses were interrupted in this mutant, including the growth of mold and the production of spores," said Liu, who also was co-author of a second study published on this week’s Science Web site about the role of WC-1 in mediating light input to the circadian clock.


Other researchers involved in the UT Southwestern study included Drs. Ping Cheng and Qiyang He, both first authors of the study and postdoctoral researchers in physiology; Dr. Kevin Gardner, assistant professor of biochemistry; Lixing Wang, a research technician in physiology; and Dr. Yuhong Yang, a postdoctoral researcher in physiology.

The study was supported by grants from the National Institutes of Health.

To automatically receive news releases from UT Southwestern via e-mail, send a message to UTSWNEWS-REQUEST@listserv.swmed.edu. Leave the subject line blank and in the text box, type SUB UTSWNEWS.


Amy Shields | EurekAlert!
Further information:
http://www.swmed.edu/

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New bioimaging technique is fast and economical

21.08.2017 | Medical Engineering

Silk could improve sensitivity, flexibility of wearable body sensors

21.08.2017 | Materials Sciences

On the way to developing a new active ingredient against chronic infections

21.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>