Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

40-year search is over: UT Southwestern researchers identify key photoreceptor in fungi

05.07.2002


After 40 years of searching for the photoreceptor that controls multiple vital processes in fungi, researchers at UT Southwestern Medical Center at Dallas have discovered the protein that triggers this phenomenon.



Light regulates several physiological processes in fungi, including their ability to produce spores and the synchronization of their internal biological clocks, but their photoreceptors – receptors that are sensitive to light and are essential for most ongoing processes – were not known until this breakthrough discovery made by UT Southwestern researchers.

In this week’s on-line version of Science, the researchers report that the protein White Collar –1, or WC-1, is the photoreceptor for light responses in fungi, which encompass yeast and mold. Fungi share with bacteria the important ability to break down complex organic substances of almost every type and are essential to the recycling of carbon and other elements in the cycle of life. Fungi are also important as foods and to the fermentation process in the development of substances for industrial and medical importance, including alcohol, antibiotics, other drugs and antitoxins.


UT Southwestern researchers also specifically identified WC-1’s role in the internal biological clock of fungi, which is called the circadian clock and is controlled by light. This internal time-keeping system is a fundamental property in almost all organisms, allowing them to adapt to the natural environment.

"This discovery is important because it provides a better understanding of how life works and how life adjusts to the environment," said Dr. Yi Liu, senior author of the study and an assistant professor of physiology at UT Southwestern.

WC-1 previously had been identified as a protein involved in the transfer of genetic code information, a process called transcription, but researchers had not discovered its role as a photoreceptor until now.

"We hypothesized if the photo sensory domain of WC-1 was removed, all light- regulated processes, including the circadian clock, would be blind," said Liu.

The researchers tested this hypothesis by creating an organism that lacked WC-1 putative photo sensory domain. Liu and his collaborators demonstrated that WC-1, like all known photoreceptors, is associated with a photo pigment, the molecule that is sensitive to light.

"As we predicted, this mutant organism was literally blind to light. The circadian clock was no longer synchronized by light and the light-regulated genes were not turned on after light treatment, which affected many physiological processes," Liu said.

"All light responses were interrupted in this mutant, including the growth of mold and the production of spores," said Liu, who also was co-author of a second study published on this week’s Science Web site about the role of WC-1 in mediating light input to the circadian clock.


Other researchers involved in the UT Southwestern study included Drs. Ping Cheng and Qiyang He, both first authors of the study and postdoctoral researchers in physiology; Dr. Kevin Gardner, assistant professor of biochemistry; Lixing Wang, a research technician in physiology; and Dr. Yuhong Yang, a postdoctoral researcher in physiology.

The study was supported by grants from the National Institutes of Health.

To automatically receive news releases from UT Southwestern via e-mail, send a message to UTSWNEWS-REQUEST@listserv.swmed.edu. Leave the subject line blank and in the text box, type SUB UTSWNEWS.


Amy Shields | EurekAlert!
Further information:
http://www.swmed.edu/

More articles from Life Sciences:

nachricht Designed proteins to treat muscular dystrophy
29.06.2017 | Universität Basel

nachricht Funding of Collaborative Research Center developing nanomaterials for cancer immunotherapy extended
28.06.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>