Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New way found to see light through novel protein identified by Dartmouth geneticists

05.07.2002


Dartmouth Medical School geneticists have discovered a new class of proteins that see light, revealing a previously unknown system for how light works.



The novel photoreceptors are part of the gears that drive biological clocks, the cellular timekeepers of the circadian rhythm, which paces life’s daily ebb and flow in a 24-hour light-dark cycle. Their identification also opens a window for genetically engineered drug delivery systems that exploit the properties of these newfound molecules.

The findings, by Drs. Jay Dunlap and Jennifer Loros, and graduate student Allan Froehlich, will be published in an upcoming issue of Science; they are currently reported online in Science Express.


Dunlap, professor and chair of genetics, and Loros, professor of biochemistry, were the first to delineate circadian clockwork in Neurospora, the common bread mold and one of the best-known genetic model systems. They pieced together how the circadian cycle works and demonstrated how light resets it through a complex of interwoven molecular messages.

"That left open the question then of what actually absorbed the light. What we found is a new paradigm within clocks," Dunlap says. "Light is absorbed by a molecule that is actually within the clock and is an activating element in the clock cycle. This is a new molecular mechanism to see light and a new way for light to have an effect. Although the protein has been known for sometime, this is a configuration of activities that’s not been reported before for any protein."

Since bread mold belongs to the fungal phylogenetic kingdom, eventually researchers may be able to harness the proteins against fungal disease. "Virtually nothing is known about how pathogenic fungi respond to light or whether that can be exploited for a noninvasive therapy," Dunlap acknowledges. It may be a long shot, but drug therapies start with properties people don’t have. "If you want to do therapy--antifungal, antibacterial or anything--you start looking for biochemical activities that the host does not have that can be targeted on the pathogen."

Froelich, a graduate student with Dunlap and Loros, built on their discovery that the gene frequency (frq) encodes a central cog of the clock cycle and that light resets the clock by acting on frq. He identified the frq parts necessary and sufficient for light induced expression of the gene, and determined that the proteins that bind to these parts are the clock proteins White Collar-1 and White Collar-2 (WC-1 and WC-2). He then showed that both proteins were sufficient for binding, that under appropriate biochemical conditions they could also detect light and, subsequently, that WC-1 is actually the photoreceptor protein.

WC-1 is a transcription factor that partners with WC-2, and binds to DNA of light-regulated genes. Transcription factors are proteins whose role is to regulate expression of genes; they bind to DNA and turn on genes, Dunlap explains. "This is the first case of a transcription factor that is itself a photo pigment and a transcription factor that contains both ability to turn on gene expression and ability to do that in response to light within the same protein."


For further information, contact Jay Dunlap at: Jay.Dunlap@dartmouth.edu.

DMS Communications | EurekAlert!
Further information:
http://www.dartmouth.edu/dms/news

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>