Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New way found to see light through novel protein identified by Dartmouth geneticists

05.07.2002


Dartmouth Medical School geneticists have discovered a new class of proteins that see light, revealing a previously unknown system for how light works.



The novel photoreceptors are part of the gears that drive biological clocks, the cellular timekeepers of the circadian rhythm, which paces life’s daily ebb and flow in a 24-hour light-dark cycle. Their identification also opens a window for genetically engineered drug delivery systems that exploit the properties of these newfound molecules.

The findings, by Drs. Jay Dunlap and Jennifer Loros, and graduate student Allan Froehlich, will be published in an upcoming issue of Science; they are currently reported online in Science Express.


Dunlap, professor and chair of genetics, and Loros, professor of biochemistry, were the first to delineate circadian clockwork in Neurospora, the common bread mold and one of the best-known genetic model systems. They pieced together how the circadian cycle works and demonstrated how light resets it through a complex of interwoven molecular messages.

"That left open the question then of what actually absorbed the light. What we found is a new paradigm within clocks," Dunlap says. "Light is absorbed by a molecule that is actually within the clock and is an activating element in the clock cycle. This is a new molecular mechanism to see light and a new way for light to have an effect. Although the protein has been known for sometime, this is a configuration of activities that’s not been reported before for any protein."

Since bread mold belongs to the fungal phylogenetic kingdom, eventually researchers may be able to harness the proteins against fungal disease. "Virtually nothing is known about how pathogenic fungi respond to light or whether that can be exploited for a noninvasive therapy," Dunlap acknowledges. It may be a long shot, but drug therapies start with properties people don’t have. "If you want to do therapy--antifungal, antibacterial or anything--you start looking for biochemical activities that the host does not have that can be targeted on the pathogen."

Froelich, a graduate student with Dunlap and Loros, built on their discovery that the gene frequency (frq) encodes a central cog of the clock cycle and that light resets the clock by acting on frq. He identified the frq parts necessary and sufficient for light induced expression of the gene, and determined that the proteins that bind to these parts are the clock proteins White Collar-1 and White Collar-2 (WC-1 and WC-2). He then showed that both proteins were sufficient for binding, that under appropriate biochemical conditions they could also detect light and, subsequently, that WC-1 is actually the photoreceptor protein.

WC-1 is a transcription factor that partners with WC-2, and binds to DNA of light-regulated genes. Transcription factors are proteins whose role is to regulate expression of genes; they bind to DNA and turn on genes, Dunlap explains. "This is the first case of a transcription factor that is itself a photo pigment and a transcription factor that contains both ability to turn on gene expression and ability to do that in response to light within the same protein."


For further information, contact Jay Dunlap at: Jay.Dunlap@dartmouth.edu.

DMS Communications | EurekAlert!
Further information:
http://www.dartmouth.edu/dms/news

More articles from Life Sciences:

nachricht Molecular Force Sensors
20.09.2017 | Max-Planck-Institut für Biochemie

nachricht Foster tadpoles trigger parental instinct in poison frogs
20.09.2017 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>