Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Life, but not as we know it?

Researchers at The University of Nottingham have taken some important first steps to creating a synthetic copycat of a living cell, a leading science journal reports.

Dr Cameron Alexander and PhD student George Pasparakis in the University's School of Pharmacy have used polymers — long-chain molecules — to construct capsule-like structures that have properties mimicking the surfaces of a real cell.

In work published as a 'VIP paper' in the journal Angewandte Chemie International Edition, they show how in the laboratory they have been able to encourage the capsules to 'talk' to natural bacteria cells and transfer molecular information.

The breakthrough could have a number of potential medical uses. Among them could be the development of new targeted drug delivery systems, where the capsules would be used to carry drug molecules to attack specific diseased cells in the body, while leaving healthy cells intact, thereby reducing the number of side affects that can be associated with treatments for life-threatening illnesses such as cancer.

... more about:
»bacteria »capsule »synthetic

The technology could also be used as an anti-microbial agent, allowing doctors to destroy harmful bacteria, without attacking other health-promoting bacteria in the body, which could offer a new weapon in the fight against superbugs.

Dr Cameron Alexander said: “These are very primitive steps in the lab, and still a long way from a true synthetic counterpart to a biological cell, but we have demonstrated that we can transfer certain molecules from inside the synthetic capsule to the bacteria when they are in physical contact, which is an exciting development.

“It's extremely early stages, but it's a move closer to the big experiment when we can one day ask whether a natural cell can think a synthetic cell is one of its own.”

Emma Thorne | alfa
Further information:

Further reports about: bacteria capsule synthetic

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>