Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Microbial stowaways: are ships spreading disease?

Ships are inadvertently carrying trillions of stowaways in the water held in their ballast tanks. When the water is pumped out, invasive species could be released into new environments. Disease-causing microbes could also be released, posing a risk to public health, according to an article in the May issue of Microbiology Today.

"There is no romantic adventure or skullduggery at work here," said Professor Fred Dobbs from Old Dominion University, Virginia, USA. Ships pump water in and out of ballast tanks to adjust the waterline and compensate for cargo loading, making the ship run as efficiently as possible. These tanks can hold thousands of tonnes of water. "Any organisms in the water are likely to be released when it is next pumped out."

Many non-native animals and plants have been taken to new environments and become invasive, threatening the survival of local species; some fundamentally alter the ecosystem. Zebra mussels were introduced in North America and the comb jelly in the Black Sea and both have had enormous ecological and economic impacts.

For more than 20 years we have known that a variety of large phytoplankton and protozoa are transported in this way, but we know very little about smaller microbes like bacteria and viruses. "It is inevitable that hundreds of trillions of micro-organisms enter a single ship's ballast tank during normal operations," said Professor Dobbs. The majority of these microbes are harmless, but some are a potential risk to public health.

... more about:
»Ballast »Cholera »Dobbs »microbes

"Vibrio cholerae, which causes cholera in humans, can be carried in ballast tanks," said Professor Dobbs. "There have been no known outbreaks of disease associated with ballasting activities, but the water is only sampled very rarely." Other disease-causing microbes in the tanks include Cryptosporidium parvum and Giardia duodenalis, which cause stomach upsets.

Some people say microbes are present everywhere; they may be easily dispersed because they are so small. However, many experts believe micro-organisms have a "biogeography", a natural home, which means they could become invasive if moved and have a negative effect on different environments. There is some evidence for this argument: two phytoplankton species called diatoms were introduced to the English Channel from the North Pacific Ocean

The International Maritime Organisation, which sets rules and standards for the global shipping industry, has proposed an upper limit to the numbers of Vibrio cholerae, E. coli, and intestinal enterococci contained in discharged ballast water. A few ships are also using different treatments to reduce and even eliminate the microbes in their ballast water. "A number of techniques are being looked at for this purpose, from filtration to biocides, ultrasound to ultraviolet irradiation," said Professor Dobbs. "Our understanding of the issues involved will increase as more studies are carried out, particularly those employing the tools of modern molecular biology."

Lucy Goodchild | alfa
Further information:

Further reports about: Ballast Cholera Dobbs microbes

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>