Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Where man boldly goes, bacteria follow -are we contaminating space?

29.05.2008
Life in outer space is an absolute certainty, and it is likely to be more familiar than we might think, according to an article in the May issue of Microbiology Today. Ever since the start of the space race we have sent more than just satellites and astronauts into space: spacecraft are not routinely decontaminated and are teeming with microbial life.

"Wherever man boldly goes his microbial fauna is sure to follow," said Lewis Dartnell, an astrobiologist at University College London. The Russian space station Mir was launched in 1986 and microbial studies investigated the diversity of bacteria living alongside the astronauts.

In 1998, free-floating blobs of water found during a NASA mission to the station were analyzed and discovered to contain microbes including faecal bacteria like E. coli, plague bacterium-related species of Yersinia, and even what was suspected to be Legionella, as well as fungi, amoebae and protozoa.

"Preventing the spread of microbial life between worlds of the solar system has been a top priority for decades now," said Lewis. "This effort is known as planetary protection." Today's International Space Station (ISS) is much cleaner than Mir was 20 years ago, thanks to HEPA filters, weekly cleaning and biweekly disinfecting regimes. But inevitably, the ISS is still far from being bug-free; recent sampling revealed the bacterium Staphylococcus epidermidis surviving in different areas.

... more about:
»Lewis »Mars »bacteria »microbes »microbial

But it's not just planets we need to protect - astronauts are at increased risk of infection in space. Respiratory infections are common among astronauts and diseases occur in a quarter of space shuttle flights. "Prolonged exposure to cosmic radiation and microgravity is believed to have a negative effect on the immune system, and disease transmission is enhanced within the closed environment of recycled air and water," said Lewis Dartnell. Microbes also pose an increased risk of allergies, toxic air and water supply and even biodegradation of critical spacecraft components.

This week, the Phoenix lander touched down on Mars, hoping to take the first ever direct measurements of Martian water and organic molecules. "To guarantee the cleanliness of the robotic arm, it was enclosed in a biobarrier bag - effectively an interplanetary condom," said Lewis. But this will not be a feasible control measure for humans. "Humans and spaceships are inherently dirty and once we arrive to plant flags in the rusty soil our microbial entourage will begin leaking out onto Mars." What's more, microbes have an uncanny ability to survive as spores, resistant to heat, cold and radiation. "Once humans have visited Mars, we may never be certain that any biological discoveries weren't simply signs of our own dirty sleeves," said Lewis Dartnell.

In fact, we might actually need to take microbes on a manned mission to Mars. "For longer missions, it will not be possible to take sufficient supplies from Earth," said Lewis. "Scientists are developing ingenious life support systems relying on plants and micro-organisms to provide food, waste recycling and water purification." Of course, in this case, an outbreak of harmful microbes could crash life support systems as well as affecting the health of the crew, endangering the whole mission. "For better or worse, space bugs are here to stay."

Lucy Goodchild | alfa
Further information:
http://www.sgm.ac.uk
http://www.micropodonline.com/podcast.html

Further reports about: Lewis Mars bacteria microbes microbial

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>