Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Where man boldly goes, bacteria follow -are we contaminating space?

29.05.2008
Life in outer space is an absolute certainty, and it is likely to be more familiar than we might think, according to an article in the May issue of Microbiology Today. Ever since the start of the space race we have sent more than just satellites and astronauts into space: spacecraft are not routinely decontaminated and are teeming with microbial life.

"Wherever man boldly goes his microbial fauna is sure to follow," said Lewis Dartnell, an astrobiologist at University College London. The Russian space station Mir was launched in 1986 and microbial studies investigated the diversity of bacteria living alongside the astronauts.

In 1998, free-floating blobs of water found during a NASA mission to the station were analyzed and discovered to contain microbes including faecal bacteria like E. coli, plague bacterium-related species of Yersinia, and even what was suspected to be Legionella, as well as fungi, amoebae and protozoa.

"Preventing the spread of microbial life between worlds of the solar system has been a top priority for decades now," said Lewis. "This effort is known as planetary protection." Today's International Space Station (ISS) is much cleaner than Mir was 20 years ago, thanks to HEPA filters, weekly cleaning and biweekly disinfecting regimes. But inevitably, the ISS is still far from being bug-free; recent sampling revealed the bacterium Staphylococcus epidermidis surviving in different areas.

... more about:
»Lewis »Mars »bacteria »microbes »microbial

But it's not just planets we need to protect - astronauts are at increased risk of infection in space. Respiratory infections are common among astronauts and diseases occur in a quarter of space shuttle flights. "Prolonged exposure to cosmic radiation and microgravity is believed to have a negative effect on the immune system, and disease transmission is enhanced within the closed environment of recycled air and water," said Lewis Dartnell. Microbes also pose an increased risk of allergies, toxic air and water supply and even biodegradation of critical spacecraft components.

This week, the Phoenix lander touched down on Mars, hoping to take the first ever direct measurements of Martian water and organic molecules. "To guarantee the cleanliness of the robotic arm, it was enclosed in a biobarrier bag - effectively an interplanetary condom," said Lewis. But this will not be a feasible control measure for humans. "Humans and spaceships are inherently dirty and once we arrive to plant flags in the rusty soil our microbial entourage will begin leaking out onto Mars." What's more, microbes have an uncanny ability to survive as spores, resistant to heat, cold and radiation. "Once humans have visited Mars, we may never be certain that any biological discoveries weren't simply signs of our own dirty sleeves," said Lewis Dartnell.

In fact, we might actually need to take microbes on a manned mission to Mars. "For longer missions, it will not be possible to take sufficient supplies from Earth," said Lewis. "Scientists are developing ingenious life support systems relying on plants and micro-organisms to provide food, waste recycling and water purification." Of course, in this case, an outbreak of harmful microbes could crash life support systems as well as affecting the health of the crew, endangering the whole mission. "For better or worse, space bugs are here to stay."

Lucy Goodchild | alfa
Further information:
http://www.sgm.ac.uk
http://www.micropodonline.com/podcast.html

Further reports about: Lewis Mars bacteria microbes microbial

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>