Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Where man boldly goes, bacteria follow -are we contaminating space?

29.05.2008
Life in outer space is an absolute certainty, and it is likely to be more familiar than we might think, according to an article in the May issue of Microbiology Today. Ever since the start of the space race we have sent more than just satellites and astronauts into space: spacecraft are not routinely decontaminated and are teeming with microbial life.

"Wherever man boldly goes his microbial fauna is sure to follow," said Lewis Dartnell, an astrobiologist at University College London. The Russian space station Mir was launched in 1986 and microbial studies investigated the diversity of bacteria living alongside the astronauts.

In 1998, free-floating blobs of water found during a NASA mission to the station were analyzed and discovered to contain microbes including faecal bacteria like E. coli, plague bacterium-related species of Yersinia, and even what was suspected to be Legionella, as well as fungi, amoebae and protozoa.

"Preventing the spread of microbial life between worlds of the solar system has been a top priority for decades now," said Lewis. "This effort is known as planetary protection." Today's International Space Station (ISS) is much cleaner than Mir was 20 years ago, thanks to HEPA filters, weekly cleaning and biweekly disinfecting regimes. But inevitably, the ISS is still far from being bug-free; recent sampling revealed the bacterium Staphylococcus epidermidis surviving in different areas.

... more about:
»Lewis »Mars »bacteria »microbes »microbial

But it's not just planets we need to protect - astronauts are at increased risk of infection in space. Respiratory infections are common among astronauts and diseases occur in a quarter of space shuttle flights. "Prolonged exposure to cosmic radiation and microgravity is believed to have a negative effect on the immune system, and disease transmission is enhanced within the closed environment of recycled air and water," said Lewis Dartnell. Microbes also pose an increased risk of allergies, toxic air and water supply and even biodegradation of critical spacecraft components.

This week, the Phoenix lander touched down on Mars, hoping to take the first ever direct measurements of Martian water and organic molecules. "To guarantee the cleanliness of the robotic arm, it was enclosed in a biobarrier bag - effectively an interplanetary condom," said Lewis. But this will not be a feasible control measure for humans. "Humans and spaceships are inherently dirty and once we arrive to plant flags in the rusty soil our microbial entourage will begin leaking out onto Mars." What's more, microbes have an uncanny ability to survive as spores, resistant to heat, cold and radiation. "Once humans have visited Mars, we may never be certain that any biological discoveries weren't simply signs of our own dirty sleeves," said Lewis Dartnell.

In fact, we might actually need to take microbes on a manned mission to Mars. "For longer missions, it will not be possible to take sufficient supplies from Earth," said Lewis. "Scientists are developing ingenious life support systems relying on plants and micro-organisms to provide food, waste recycling and water purification." Of course, in this case, an outbreak of harmful microbes could crash life support systems as well as affecting the health of the crew, endangering the whole mission. "For better or worse, space bugs are here to stay."

Lucy Goodchild | alfa
Further information:
http://www.sgm.ac.uk
http://www.micropodonline.com/podcast.html

Further reports about: Lewis Mars bacteria microbes microbial

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>