Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein Fibrils as Alternative Plastics?

29.05.2008
Amyloids are not just pathological agents, they are interesting nanomaterials

Amyloid deposits in tissues and organs are linked to a number of diseases, including Alzheimer’s, Parkinson’s, type II diabetes, and prion diseases such as BSE. However, amyloids are not just pathological substances; they have potential as a nanomaterials.

“The potential applications of these supramolecular assemblies exceed those of synthetic polymers,” state Ehud Gazit and co-author Izhack Cherny in the journal Angewandte Chemie, “since the building blocks may introduce biological function in addition to mechanical properties.”

Even in nature, amyloids are not merely abnormal, incorrectly folded proteins; they are physiological components of organisms. For example, they are an important protective material in the egg envelopes of insects and fish. They are also involved in the formation of the biofilms of many bacteria, a coating on the surface of the bacterial cells that protects them from antimicrobial substances and facilitates their attachment to surfaces.

... more about:
»Amyloid »Protein »properties

Amyloid fibrils are bundles of highly ordered protein filaments made of ladder-like strands and can be several micrometers long. In cross-section, amyloids appear as hollow cylinders or ribbons. Although amyloid fibrils are proteins, they more closely resemble synthetic polymers (plastics) than the usual globular proteins. Amyloids can display amazing mechanical properties similar to spider silk. Spider silk is, by weight, significantly stronger than steel and can be stretched to many times its original length without tearing— properties that have not been reproducible with synthetic fibers.

“The self-assembly properties of amyloids, together with their observed plasticity, makes them attractive natural building blocks for the design of new nanostructures and nanomaterials,” according to the authors from the University of Tel Aviv (Israel). “These building blocks can be broadly varied by means of simple molecular biological techniques.” Surfaces could be given tailored and biocompatible coatings, for example, in analytical flow devices for medical technology or bioanalysis. Other ideas include amyloid hydrogels for the encapsulation and controlled release of drugs and for scaffolds for three-dimensional cell cultures and tissue engineering. Functional proteins such as enzymes could be bound to amyloid-forming sequences to mimic biological processes.

Amyloid fibrils are also suitable as matrices for nanostructures. For example, it has been possible to produce a conducting nanoscale coaxial cable by filling amyloid nanotubes with sliver and externally coating them with gold.

Author: Ehud Gazit, Tel Aviv University (Israel), http://www.tau.ac.il/lifesci/departments/biotech/members/gazit/gazit.html

Title: Amyloids: Not Only Pathological Agents but Also Ordered Nanomaterials

Angewandte Chemie International Edition 2008, 47, No. 22, 4062–4069, doi: 10.1002/anie.200703133

Ehud Gazit | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://www.tau.ac.il/lifesci/departments/biotech/members/gazit/gazit.html

Further reports about: Amyloid Protein properties

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>