Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Team Receives Federal Grants to Create Fabrics to Render Toxic Chemicals Harmless

29.05.2008
Cornell fiber scientist Juan Hinestroza is working with the U.S. government to create fabrics made of functional nanofibers that would decompose toxic industrial chemicals into harmless byproducts.

Potential applications include safety gear for U.S. soldiers and filtration systems for buildings and vehicles.

Hinestroza, assistant professor of fiber science in the College of Human Ecology, is a member of two teams that secured more than $2.2 million from the U.S. Department of Defense; about $875,000 will go directly to Hinestoza's work. Both grants are multi-university collaborative efforts funded through the U.S. Defense Threat Reduction Agency.

"These nanostructures could be used in creating advanced air filtration and personal protection systems against airborne chemical threats and can find many applications in buildings, airplanes as well as personal respirators," Hinestroza said.

... more about:
»Hinestroza »fiber »nanofibers

The first project, in collaboration with North Carolina State University, is aimed at understanding how very small electrical charges present in fibers and nanofibers can help in capturing nanoparticles, bacteria and viruses.

"Understanding how these charges are injected into the fibers and how they are dissipated under different environmental conditions can open an avenue to significant improvements in air filtration technology," Hinestroza said.

The position and distribution of the electrical charges on the nanofibers will be fed into computerized fluid dynamics algorithms developed by Andrey Kutznetsov of NC State to predict the trajectory of the nanoparticles challenging the filter. Hinestroza and NC State's Warren Jasper pioneered work in this area a couple of years ago.

The second project, in collaboration with the University of California-Los Angeles (UCLA), will study the incorporation of a new type of molecules -- called metal organic polyhedra and metal organic frameworks -- onto polymeric nanofibers to trap dangerous gases as toxic industrial chemicals and chemical warfare agents, then decompose them into substances that are less harmful to humans and

capture them for further decontamination. The synthesis of these molecules was pioneered by Omar Yaghi of UCLA.

This project will also look into the potential toxicity of these nanofiber-nanoparticle systems to humans in collaboration with Andre Nel from UCLA Medical School.

Hinestroza's research group specializes in understanding and manipulating nanoscale phenomena in fiber and polymer science.

Blaine Friedlander | newswise
Further information:
http://www.cornell.edu

Further reports about: Hinestroza fiber nanofibers

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>