Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How to construct a “firefly” worm

28.05.2008
Research describing a new modified luminescent worm that allows, for the first time, to measure, in real time, the metabolism of an entire living organism has just been published in the journal BMC Physiology1.

The key behind this capacity relies in the fact that the luminescence is produced using the animal’s available energy, which reflects its metabolism that, as such, can be extrapolated from measuring the emitted light. The new altered Caenorhabditis elegans (C.elegans) - which is widely used to study human genes - by detecting metabolic changes in the exact moment these occur, will help to understand the cause behind these changes and contribute to understand C. elegans (and human) genes, as well as the mechanisms behind disease and health. In fact, Alzheimer’s, Parkinson’s disease and different types of stress – such as starvation and oxygen deprivation - are just some of the phenomena characterised by visible metabolic changes that can now be further investigated using this new animal model.

Caenorhabditis elegans (C.elegans) is a animal model used to study human genes and their function due to the fact that part of its genome has been conserved throughout evolution, and is shared by humans. But although much research has been done on the worm’s genes, much still needs to be learned specially among the genes behind physiology, which - contrary to those linked to vital functions or body shape - can be difficult to identify, since abnormalities in them not always result in visible alterations.

Adenosine triphosphate (or ATP) is a high-energy molecule used as source of energy by the body cells, where its levels are directly linked to the organism’s metabolism. This means that alterations in the body ATP can help to reveal metabolic problems and, in fact, ATP changes are associated with a series of problems including neurodegenerative diseases and stress.

It was this link between ATP, metabolism and disease that led Cristina Lagido, Jonathan Pettitt, Aileen Flett and L. Anne Glover from the Institute of Medical Sciences at the University of Aberdeen, UK to hypothesise that ATP levels could be used as a physiological parameter in C.elegans to complement the genetic data and help to further understand its (as well as the human) genome.

With this aim in mind the researchers went to create a modified luminescent C.elegans expressing the protein firefly luciferase that, as the name indicates, comes from fireflies where it produces light by using ATP to transform a pigment called luciferin.

The idea was, that, when luciferin (that does not exist in the animal) was supplied in excess, the animal’s luminescence would be directly related to the amount of ATP existent in the worm. And, since C. elegans is transparent, the luminescence could then be measured allowing the researchers to calculated ATP levels and, consequently, follow the animal’s metabolism in real time.

But first, to confirm that the worm’s luminescence was indeed related to its ATP levels, the animals were put in conditions known to affect this molecule quantity – whether by exposing them to the toxic compound sodium azide (which is a known agent of stress) or by directly inhibiting their ATP production – and their luminescence was measured. In both cases, luminescence was significantly reduced as expected and with azide, increased levels of this compound resulted in reduced luminescent further supporting the link ATP-luminescence. Furthermore, because the effects of non-lethal doses of sodium azide – like the ones used in these experiments - are known to be reversible, after the measurements with azide the animals were washed and their luminescence measured again to be found that the emitted light was back to normal levels. Final support to the link ATP levels-luminescence came from the fact that ATP variations found in the azide experiments, agreed with measurements done by others studying similar conditions, but using different methods.

These results confirmed that Lagido, Glover and colleagues’ modified C. elegans was, in fact, a reliable model to follow the worm’s metabolism in real time. This was the first time that it was shown that luminescence could be used to assess ATP levels in a living multicellular organism.

What is most interesting about Lagido, Glover and colleagues’ modified C.elegans is how, despite its apparently simplicity, this new worm is a potentially incredible research tool to understand better the many genetic pathways involved in C. elegans physiology, including those participating in metabolism, ageing, disease and stress response. Cristina Lagido – a Portuguese researcher – and colleagues’ work has created a unique tool to link physiology and genetics in an organism which – most importantly- shares many of its genes with us humans.

Piece researched and written by:
Catarina Amorim (catarina.amorim at linacre.ox.ac.uk)
1 BMC Physiology 2008, 8:7
“Bridging the phenotypic gap: real-time assessment of mitochondrial function and metabolism of the nematode Caenorhabditis elegans”
Contacts for the authors of the original paper
Cristina Lagido - c.lagido@abdn.ac.uk
L. Anne Glover l.a.glover@abdn.ac.uk

Catarina Amorim | alfa
Further information:
http://www.biomedcentral.com/content/pdf/1472-6793-8-7.pdf

Further reports about: ATP Azide Glover Lagido Stress elegans genes luminescence metabolism modified

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>