Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shining new light on drug research: Global drug research programme comes to Diamond in Oxfordshire

28.05.2008
Diamond has announced that USA-based global biotechnology company Vertex Pharmaceuticals Incorporated is the first industrial user at the UK’s world class new research facility, Diamond Light Source.

Vertex will utilise the Diamond Synchrotron, the largest scientific facility to be built in the UK for 40 years, to advance its research programmes for the treatment of serious diseases. With a UK office in Milton Park in South Oxfordshire, Vertex is well-positioned to use the Chilton-based synchrotron, which was officially opened by Her Majesty the Queen in October 2007.

Diamond is able to produce intensely focused synchrotron light in the form of X-rays, infrared and ultraviolet, which will be used by Vertex and other companies to investigate the atomic details of how novel drugs bind to proteins involved in human diseases.

These types of structural studies have become a cornerstone for the understanding of biological processes and an invaluable element of modern medical research, leading to more rational design of therapeutic agents. Diamond will enable Vertex to generate this information at a significantly higher rate than currently possible.

... more about:
»LIGHT »Protein »Synchrotron »Vertex »X-ray »compound

Founded in the USA in 1989, Vertex has been involved in rational drug design from its outset; using synchrotron techniques to determine the structures of biological proteins that play a role in serious diseases in order to inform more intelligent creation of therapeutic molecules. In 1999, Vertex established a UK research and development site to utilize European sources of expertise in the field of structural biology. Vertex currently has a number of compounds in clinical development, including drug candidates for cystic fibrosis and rheumatoid arthritis, plus their lead compound, telaprevir – an oral protease inhibitor for the treatment of hepatitis V viral infection.

Vertex’s current research programme at Diamond Light Source will use X-ray crystallographic techniques to focus on the interaction of small molecule inhibitors with proteins implicated in a variety of human cancers, bacterial infection and the development of immune diseases. The exquisitely fine detail revealed by Diamond’s X-rays will allow Vertex scientists to understand how the inhibitor compounds may be improved to increase their potency and selectivity for the desired protein target. Ultimately, this will lead to the discovery of more efficacious therapeutic drugs.. The exceptional quality and intensity of light produced by the Diamond synchrotron will enable Vertex scientists to generate data and resolve new structures from ever smaller crystals and within shorter timeframes than ever before, effectively speeding up the drug discovery process and allowing even the most complex drug targets to be tackled.

Dr Graham Cheetham, a Research Fellow at Vertex, carried out preliminary trials at Diamond in December 2007 and was impressed with the facility’s resources. He says: “Vertex continuously seeks new technologies and new methods that will improve our drug discovery and development efforts, and Diamond’s synchrotron brings to Vertex a novel tool for advancing our capabilities. To conduct cutting-edge science you need cutting-edge tools, and Diamond is a centre of excellence when it comes to its equipment and scientists.”

The benefits of using Diamond are recognised companywide. Dr Julian Golec, Senior Vice President, Vertex UK, says: “We believe synchrotron research will continue to play a major role in our drug discovery and development efforts, and we look forward to our continued work with Diamond in the UK. Vertex is committed to developing drugs for serious diseases. As our targets for medical intervention become more complex, state of the art facilities and technologies like those at Diamond are central to our continued progress in the understanding of biological processes that enable innovative drug design.”

Gerd Materlik, Chief Executive at Diamond, welcomes other industrial scientists who would like to come and visit Diamond to discover how it can aid their research. He says: “Synchrotrons are well established as valuable aids to industrial research in many areas, from structural biology through to engineering. Diamond has a wide range of applications and is, therefore, an essential tool to numerous fields of scientific research. There are many companies that may be able to benefit from using the outstanding tools and expertise that we have at this cutting-edge facility. Beamtime varies in cost depending on a number of factors, such as: length of time required for experiments; complexity; and level of support required.”

Sarah Bucknall | alfa
Further information:
http://www.diamond.ac.uk

Further reports about: LIGHT Protein Synchrotron Vertex X-ray compound

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>